
Discovering an S-Coverable WF-net using DiSCover
Eric Verbeek[0000-0002-1658-9679]

Department of Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands
h.m.w.verbeek@tue.nl

Abstract—Although many algorithms exist that can discover
a WF-net from an event log, only a few (if any at all) can
discover advanced routing constructs. As examples, the Inductive
miner uses process trees and cannot discover complex loops,
or situations where choice and parallel behavior is mixed, and
the Hybrid ILP miner cannot discover certain complex routing
constructs because it cannot discover silent transitions. This
paper introduces the DiSCover miner, a discovery algorithm
that can discover these more complex constructs and that is
implemented in ProM. The DiSCover miner discovers from the
event log a WF-net that corresponds to a collection of state
machines that need to synchronize on the visible transitions (that
is, on the activities from the event log). As such, it discovers a
WF-net that is S-Coverable but not necessarily sound. Initial
results show that it can discover complex routing constructs and
that it performs well on the data sets of the different Process
Discovery Contests. It even preformed better than winners of
the 2020 and 2021 contests.

Index Terms—event log, discovery, S-coverable, WF-net, ProM,
Process Discovery Contest

I. INTRODUCTION

Process discovery has been around now for about twenty
years. In these twenty years, a good number of different
miners have been introduced. Some of these miners result in
imperative models, like a workflow net (WF-net), a BPMN
diagram, or a process tree, others result in declarative models
like Declare, DCR graphs, and log skeletons. In this paper,
we will mainly consider the miners that result in imperative
models, and we assume that imperative models in general can
be captured by a WF-net.

The miners in the commercial tools typically use a simple
strategy based on the so-called directly-follows graph. This
graph contains information how often activities were executed,
and how often they directly follow each other. This can be
computed from an event log in a straightforward manner,
and comes with the guarantee that the entire event log can
be replayed perfectly on it. To avoid too much clutter in
the graphs, these tools often allow the user to filter out
infrequent nodes and/or infrequent edges. An advantage of
this filtering is that the graph may become more insightful
to the user. A disadvantage is that the event log can not be
replayed perfectly on the filtered graph. As the directly-follows
graph is basically a state machine, it does not allow for any
concurrency. As a result, it is obvious that these tools cannot
discover concurrency.

This work made use of the Dutch national e-infrastructure with the support
of the SURF Cooperative using grant no. EINF-3334.

The academic tools that use imperative models have been
trying to fill this gap in different ways. Some miners are still
based on the directly-follows graph, but use this graph to
decide which activities are concurrent. The Alpha miner [1] is
an example of such an algorithm. If two activities can directly
follow each other, then they are considered to be concurrent,
and no path of directed arcs will connect them. Other miners
that also use the directly-follows graph use process trees as the
underlying formalism. The Inductive miner [2] is an example
of such a miner. This miner works by finding specific cuts
in the directly-follows graph. If an appropriate cut is found,
the graph is split accordingly, and the event log as well.
This procedure is then repeated on the event logs that result
from the split, until the event logs have become trivial (like a
single activity is left). The downside of using process trees is
that more complex structures cannot be captured completely.
As a result, the Inductive miner can only discover a limited
collection of WF-nets.

Other academic tools do not use the directly-follows graph.
Examples include region-based miners, like the Hybrid ILP
miner [3], the Prime miner [4], and the eST miner [5]. Both
the Hybrid ILP miner and the eST miner start with introducing
a transition for every unique activity in the event log, and
then add places that do not restrict any trace in some way
(this differs per miner). Although thees miners can result in
WF-nets with complex structures, they cannot introduce any
silent transitions in these WF-nets, which limits what they
can do. As a result, they are limited to whatever it can do
with the transitions that correspond directly to an activity. For
example skipping an activity is hard to model if you cannot
use a silent transition that models this skip. The Prime miner
potentially results in very good WF-nets. Basically, it clusters
traces into event structures, then discovers a WF-net for every
event structure, and finally merges everything into a single
WF-net. Unfortunately, in practice this miner often fails to
produce a result in reasonable time because the merging step
simply takes too long.

For all of these miners it holds that they could not suc-
cessfully compete in the Process Discovery Contests1 (PDCs),
which is a series of contests for process discovery algorithms.
As examples, the PDC of 2020 was won by a miner that
returned a WF-net that resulted from filtering the directly-
follows graph, while the PDC of 2021 was won by a miner

1See https://www.tf-pm.org/competitions-awards/discovery-contest



that resulted in DCR graphs [6], that is, in declarative models.
This paper offers an approach that aims to extend the

commercial miners with a simple and flexible way to detect
concurrency, such that the resulting miner is competitive in the
PDCs. Basically, the approach splits the directly-follows graph
into a collection of smaller directly-follows graphs containing
only activities that do not exhibit concurrency. Using an
algorithm similar to the miners in the commercial tools, a
collection of state machines is then discovered from these
smaller graphs. By merging these discovered state machines
on the activities, concurrency is finally added to the discovered
WF-net. Because the final WF-net is constructed by merging
transitions of state machine WF-nets, it is S-Coverable [7] by
construction.

The remainder of this paper is organized as follows. Sec-
tion II first introduces some preliminaries, after which Sec-
tion III introduces the proposed DiSCover miner. Section IV
introduces the implementation of the miner in the ProM 6.12
release. Section V puts this implementation to the test on the
data sets of the Process Discovery Contests. Finally, Section VI
concludes the paper.

II. PRELIMINARIES

A. Event logs

We consider an event log to be a multi-set (or bag) of
sequences over some alphabet of activities. Sometimes, this
restricted form of event logs is also referred to as activity
logs, as they only contain the activities and no other attributes
(like information on when the activity was executed or on the
resource that executed the activity).

As the running example for an event log, we use
the following event log, which was taken from [8]:
Example event log L = [〈a, b, c, g, e, h〉10, 〈a, b, c, f, g, h〉10,
〈a, b, d, g, e, h〉10, 〈a, b, d, e, g, h〉10, 〈a, b, e, c, g, h〉10,
〈a, b, e, d, g, h〉10, 〈a, c, b, e, g, h〉10, 〈a, c, b, f, g, h〉10,
〈a, d, b, e, g, h〉10, 〈a, d, b, f, g, h〉10]. As an example, in
this event log, the activity sequence where a, b, c, g, e, and
h are executed in that order was recorded 10 times.

In the example event log, activities e and f appear to be in a
choice, as precisely one of them occurs in any trace. However,
where activity f always precedes g, e can either precede or
follow g. As such, e seems to be concurrent to g, but f seems
to be in a sequence with it. There also seems to be choice
between c and d, but where d can both directly follow e and
directly precede it, c can only directly follow it. Such mixtures
of choice and concurrency are typically hard to discover by
existing miners.

To make the start and end of traces explicit, we can implic-
itly extend the traces with artificial start and end activities.
As an example, the trace 〈a, b, c, g, e, h〉 would then become
〈I, a, b, c, g, e, h,�〉, where I is the artificial start activity and
� is the artificial end activity. This paper assumes that these
artificial activities are present in any event log, either explicitly
or implicitly.

a

d

b

c

g100 60

10

2030

30

80

20

50

100 100100

50

20

40

20

20

e
70

f
30

20

20

20

10

20

20

10

10

20

h
100

100

Fig. 1. Directly-follows graph G for the event log L.

B. Directly-follows graph

Fig. 1 shows the directly-follows graph for the example
event log. This graph shows how often activities were executed
in the event log, but also how often a first activity was directly
followed by a second activity. As examples, activity e was
executed 70 times, and it was 10 times directly followed by
c, 10 times by d, 30 times by g, and 20 times by h.

C. Commercial miners

Many commercial miners are based on this directly-follows
graph, and many of them (including Fluxicon’s Disco and
Celonis’ miner) result in a directly-follows graph with some
filtering applied to it. As a result, these miners cannot discover
concurrency, instead they discover loops, like shown in Fig. 1.
As an example, the back-and-forth arcs between activities b
and d suggest that these activities can be executed in any order,
and not that they can be executed arbitrarily many times.

The advantage of discovering a directly-follows graph is
that it is very simple and can be done very fast. We only
need to traverse the event log once, while we keep count of
how many times activities were executed and how many times
they followed each other directly. Filtering the directly-follows
graph may be more involved, and may require sophisticated
heuristics, but still may be very fast. As a result, discovering
and showing a filtered directly-follows graph is fast, which
explains why it is used in many commercial tools.

D. Academic miners

Academic tools typically try to detect concurrency. As a
result, these miners are usually less simple, and less fast. Many
of the existing miners aim to discover a WF-net [9], or a
process model that can be easily converted into a WF-net. A
WF-net is a Petri net [10]–[12] with a single source place (no
incoming arcs) and a single sink place (no outgoing arcs). The
source place is usually labeled i and the sink place is usually
labeled o. An important property of a WF-net is whether it is
sound. If a WF-net is sound, the desired final state (a single
token in place o) can always be reached from the initial state
(a single token in place i), and any transition can be executed.

Some of these miners do start with discovering a directly-
follows graph, and then try to detect concurrency from this
graph. Examples of these discoverers include the Alpha
miner [1] and the Inductive miner [2].

Fig. 2 shows the WF-net that is discovered by the Alpha
miner from the directly-follows graph G. This WF-net has



a

b

d

c

e

>
100

100

50

70

100

50

30

70

100

50

>

f
30

g
100

<

h
100

100

100

100 100

70

70

50

50

50

50
50

30 30

50

50

100 100

100

100

100

100

<

Fig. 2. WF-net discovered from the directly-follows graph G by the alpha
miner.

been extended with similar information as G about how many
times activities were executed, and how often they directly
followed each other. Clearly, these numbers do not match for
the four places indicated with > or <: Either more tokens are
produced for such a place then are consumed (>), or more
are consumed then are produced (<). As a result, it will be
hard (if possible at all) to replay the event log correctly on
this discovered WF-net.

However, note that many of the complex features of the
event log are present in the WF-net as discovered by the Alpha
miner:

• Activity b occurs concurrent with c and d.
• There is a mandatory choice between c and d.
• There is a mandatory choice between e and f .
• If e occurs, it occurs concurrent with g.
• If f occurs, it occurs before g.

The problem for the Alpha miner is that it does not have silent
transitions (that is, transitions not directly corresponding to
any activity in the event log) to glue these discovered features
nicely together.

Fig. 3 shows the process tree [13] discovered by the
Inductive miner from the directly-follows graph G. Clearly,
this process tree allows for both activity e and f to occur, or
that neither of them occur, and it also allows f to occur after
g has occurred. As a result this process tree does not capture
some of the complex features of the event log.

III. THE DISCOVER MINER

This section introduces the DiSCover miner, which takes
the complex features of the event log into account in such
a way that the event log can still be perfectly replayed on
the discovered WF-net. First, we consider the situation where
the event log does not contain any noise, and we will show
that the discovered WF-net can then perfectly replay the event
log. Second, we add noise into the picture by dropping this
assumption that the event log does not contain any noise.

A. Assuming no noise

Like the Alpha miner and the Inductive miner, the DiSCover
miner starts from the directly-follows graph G. However,
unlike these other miners, the DiSCover miner tackles the issue

a

g

h

c b
10050

100

100

100

100 100

100

d
50

e
70

τ 
30

τ 
70

f
30

100100

100 100

100

Fig. 3. Process tree discovered from the directly-follows graph G by the
inductive miner.

of concurrency by detecting maximal subsets of activities that
do not exhibit concurrency, that is, that do not have these
back-and-forth edges between them. For graph G, four such
a maximal subsets of activities can be detected: {a, b, e, f, h},
{a, b, f, g, h}, {a, c, d, f, g, h}, and {a, c, e, f, h}.

For each of these maximal subsets, the DiSCover miner then
projects the event log on this subset and discovers a directly-
follows graph for it. As an example, Fig. 4 shows the directly-
follows graph for the subset {a, c, e, f, h}. As we assume that
the activities in the subset are not concurrent, we can simply
create a state machine WF-net from this directly-follows graph
(like the commercial tools do). As a result, the DiSCover miner
discovers a state machine WF-net for every maximal subset
of non-concurrent activities.

Fig. 5 shows the WF-net that is constructed by merging
(on the artificial start and end activities (I and �)) the state
machine WF-nets that are discovered for all four subsets.
The top-most branch in this WF-net corresponds to the state
machine WF-net discovered for the subset {a, c, e, f, h}, the
subsets for the other three branches can be detected easily.

a

c

100

10

20

10

50

100

50

40

e
70

f
30

20 h
100

10010

60

30

Fig. 4. Directly-follows graph for the example event log when projected onto
the activities a, c, e, f , and h.



Fig. 5. WF-net showing discovered state machines for the example event log L. The top state machine corresponds to the directly-follows graph shown in
Fig. 4.

Fig. 6. WF-net N discovered from the example event log L.

The only thing we now need to do, is to merge all transitions
that correspond to the same activity, and we obtain a WF-net
that is S-coverable [7] by definition. This merging step can
potentially be followed by a reduction step that uses well-
known reduction rules that preserve the behavior of the WF-
net [14], [15]. Fig. 6 shows the resulting WF-net N .

It is straightforward to show that the WF-net N can suc-
cessfully replay all the traces from the event log L, as the
merged net can only block on the next activity in the trace if
one of the contained state machines would block on it. But
by construction, a state machine cannot block on the next
activity as it was constructed to allow for all traces. As a
result, the DiSCover miner now has discovered a WF-net that
contains complex routing constructs that can perfectly replay
the event log it was discovered from. However, this net may
not be sound. As an example, after transitions a and c (and
the silent transition that connects them) have occurred, the
bottom-most of the two silent transitions that follow transition
c can now occur. This effectively prevents transitions e and
f from occurring, while one of them needs to occur to reach
completion (cf. the state machine for {a, b, e, f, h} in Fig. 5).

B. Adding noise

Noise in the event log can be taken into account by filtering
the directly-follows graph prior to using it for (i) detecting

concurrency (for the directly-follows graph of the original
event log) or (ii) discovering a state machine WF-net (for the
directly-follows graphs of the projected event logs). Basically,
any filtering technique could work here, but problems may
arise when the filtering removes paths needed to reach the
final state from the initial state. Also note that, when filtering
the directly-follows graph, the resulting WF-net may not be
able to replay the original event log perfectly.

At the moment, the DiSCover miner comes with three
thresholds that can be used to filter the directly-follows graph:
an absolute threshold, a relative threshold, and a safety thresh-
old. Let (s, t) be an edge in the directly-follows graph from a
source activity s to a target activity t, and let w be the weight
of this edge.

Absolute threshold τa
The edge (s, t) is removed if w ≤ τa.

Relative threshold τr and safety threshold τs
Let ws be the maximal weight of any edge having
s as source activity, and let wt be the weight of any
edge having t as target activity. The edge (s, t) is
removed if (1) 100 · w < τs · ws ∧ 100 · w < τs · wt

and (2) 100 · w ≤ τr · ws ∨ 100 · w ≤ τr · wt.

Using the absolute threshold, we can filter out lightweight
edges. Using the relative threshold, we can filter out edges



that are lightweights in the set of edges that have s as the
source activity or t as the target activity, but using the safety
threshold, we can prevent filtering out some edges if they are
heavyweights in either the set of edges that have s as source
activity or in the set of edges that have t as target activity.
As an example, let τr = 80, τs = 95, w = 0.99 · ws and
w = 0.1 · wt. As 100 · w > 95 · ws, this edge will not be
removed because it is a heavyweight in the set of edges that
have s as source activity.

IV. THE DISCOVER IMPLEMENTATION

The DiSCover miner has been implemented in the DiSCover
package in the ProM 6.12 release2. This package contains three
different ProM DiSCover plugins:

DiSCover Petri net (user)
Allows the user to select the thresholds, see also
Fig. 7. Apart from these thresholds, the user can
also limit the number of components, whether to
merge the transitions that correspond to the activities,
whether to reduce the merged Petri net, and whether
to use a veto-ing scheme for noise. In a veto-ing
scheme, an edge is only considered to be noise if
all the components agree on it being noise. Table I
shows the defaults values for these settings. The
miner then discovers the WF-net using these settings.
This plugin was used on the example event log with
absolute threshold and noise level both 0 to discover
the WF-nets shown by Fig. 5 and Fig. 6.

DiSCover Petri net (provided)
Discovers the WF-net using the provided settings.

DiSCover Petri net (last)
Discovers the WF-net using the settings as were last
used by any of the three plugins. This allows the user
to quickly rerun the DiSCover plugin using the same
settings on another event log.

The main plugin uses the following nine steps to discover
a WF-net from an event log:

1) The directly-follows graph is constructed from the event
log.

2See https://www.promtools.org/

Fig. 7. The dialog for the main DiSCover plugin as implemented in ProM
6.12.

0.001

0.01

0.1

1

10

100

1000

10000

0 5000 10000 15000 20000 25000 30000 35000

TI
M

E 
IN

 S
EC

O
N

D
S

NUMBER OF SETS

Constructing non-concurrent activity sets

Fig. 8. Computation times for the non-concurrent activity sets.

2) A list of concurrent activity pairs is derived from this
directly-follows graph, where two activities are pre-
sumed to be concurrent if they have back-and-forth
edges in the graph.

3) A collection of maximal non-concurrent activity sets is
derived from this list. This may take considerable time,
as we have seen cases where more than 10,000 different
sets need to be derived.

4) For every such set, a sublog is derived by filtering the
event log on the set of activities.

5) For every such sublog, a directly-follows graph is con-
structed.

6) The number of these subgraphs may be reduced to a
level that can be managed, as generating and merging
more than 1000 WF-nets seems not a good idea.

7) For every remaining subgraph, a state-machine WF-net
is constructed in a straightforward way.

8) The state-machine WF-nets are merged into a single
WF-net is a straightforward way.

9) The merged WF-net is reduced as much as possible
using existing or dedicated reduction rules. Especially if
the WF-net contains many places and many transitions,
this may take considerable time.

Noise filtering is applied to the directly follows graph as
constructed in step 1 as well as to the directly-follows graphs
constructed in step 5. Note that the same thresholds are used
for the filtering in both steps.

Step 3 may take considerable time. Fig. 8 shows the case we
encountered with the most extreme computation times. This

TABLE I
DEFAULT VALUES FOR DISCOVER PLUGIN SETTINGS

Setting Default value
Absolute threshold 1
Relative threshold 1
Safety threshold 95
Number of components 20
Merge activities Yes
Reduce Petri net Yes
Use veto for noise No



shows that it takes less than 10 seconds to construct up to
5000 different sets, but that it may take considerable more
time if there are many more sets to be constructed. In the
extreme case, the plugin had to construct 29,600 sets, which
took about 1900 seconds.

To reduce the number of subgraphs in step 6, the plugin
first uses an ILP to construct a minimal set of subgraphs such
that all possible input sets and all possible output sets are still
covered. Second, if the number of subgraphs still exceeds the
number of components as set by the user, then we just take
the required number of subgraphs.

The construction of the state-machine WF-net in step 7 uses
the following steps:

1) For every node in the directly-follows graph, that is, for
every activity, a transition is added which has the activity
as its label. If the activity is artificial, then the transition
will be silent, otherwise, it will be visible.

2) For every unique input set of any node, an input place
is created. The input set of a node is the set of activities
that can directly precede that node. Note that for the
artificial start activity the input set is the empty set.

3) For every unique output set of any node, an output place
is created. The output set of a node is the set of activities
that can directly follow that node. Note that for the
artificial end activity the output set is the empty set.

4) An arc is added from an input place to a transition if
the corresponding node has the corresponding input set.

5) An arc is added from a transition to an output place
if the corresponding node has the corresponding output
set.

6) For every edge in the directly-follows graph, a silent
transition and two arcs are added:

a) An arc from the output place of the source node
to the silent transition.

b) An arc from the silent transition to the input place
of the target node.

This way, by construction, every path through the WF-net is
a sequence of triplets (input place, transition, output place)
concatenated by silent transitions. As an example, Fig. 9 shows
the four state-machine WF-nets (combined in a single WF-net
by merging on the artificial start and end activities) constructed
for the example event log L. Note that applying the reduction
rules on this WF-net results in the WF-net shown in Fig. 5.

Fig. 10 shows the WF-net that results from this plugin using
as input the BPIC 2012 event log [16] that has been filtered on
only the A- and O-activities and using the values as shown by
Fig. 7. Although this WF-net is certainly not sound (consider,
for example, the O DECLINED+COMPLETE activity), and
can be improved on (for example, the four silent transitions
to the left and right of the A FINALIZED+COMPLETE can
be merged, after which some places can be merged as well),
this WF-net does provide some insights on the process, like
that there is a loop containing activities related to an offer (the
O-activities).

V. PUTTING IT TO THE TEST

To put the DiSCover miner to the test, we have tested it
on the data sets [17]–[21] of the different Process Discovery
Contests, including the data set of the Process Discovery
Contest of 20223. For sake of completeness, we mention
that we used a dedicated token-based replay algorithm for
classifying traces on the discovered nets, and that this al-
gorithm has been implemented as the “Classify DiSCovered
Petri net” plugin4. The reason for using a token-based replay
algorithm over an alignment-based replay algorithm was that
the alignment-based replay algorithm resulted in too many
timeouts (especially for the 2021 contest). The token-based
replay algorithm is fast and is deterministic until the first
mismatch occurs, after which it may become nondeterministic.
To alleviate this issue, we have run all tests three times like is
usual for the Process Discovery Contests of 2020, 2021, and
2022, and report only the numbers on which all three runs
agree.

Table II shows the results. The first line shows the perfect
score for every contest, the second line shows the winning
score, and the additional lines show the result given an
absolute threshold τa and a relative threshold τr (default values
were used for all other settings, see Table I). The best scores
for a contest are highlighted using a bold face, which shows
that the DiSCover plugin performs better than the winning
submissions of 2020 and 2021.

Note that the DiSCover plugin did not finish (DNF) on the
2021 data set when setting both thresholds to 0. This was
caused by the fact that the ILP reduction did not finish for
the event logs for which (roughly speaking) 15,000 or more
subgraphs were constructed. In a next release of the plugin,
we plan to make this ILP-based reduction optional to avoid
this problem.

The best score of the DiSCover plugin on the PDC 2022
data set is 88.5%, which is just below the overall score of
90.0% of the Trace miner. This is acceptable, because the size
of models obtained using the DiSCover miner is way less than
the size as obtained using the Trace miner. As an example, for
the most complex scenario (long-term dependencies, complex
loops, OR constructs, routing constructs, optional tasks, dupli-
cate tasks, heterogeneous noise (40% removed, 20% moved,

3See https://icpmconference.org/2022/process-discovery-contest/
4This plugin is also contained in the DiSCover package in the ProM 6.12

release.

TABLE II
RESULTS ON THE DIFFERENT PDC DATA SETS

PDC Year 2016 2017 2019 2020 2021 2022
Perfect 200 200 900 100.0% 100.0% 100.0%
Winner 193 197 898 76.2% 96.2% TBD
τa τr
1 10 145 160 649 31.2% 76.0% 87.2%
1 5 154 163 728 55.9% 92.1% 88.5%
1 2 173 171 795 76.8% 97.6% 87.3%
1 1 188 170 819 86.5% 98.2% 83.8%
0 0 190 169 845 67.8% DNF 66.6%



Fig. 9. State-machine WF-nets discovered from the example event log L: In-between two visible transitions, there is always a silent transition. Fig. 6 shows
this WF-net after merging all visible transitions and applying all reduction rules, whereas Fig. 5 shows this WF-net after only applying all reduction rules.

Fig. 10. The WF-net discovered using the plugin from the BPIC 2012 event
log filtered on only the A- and O-activities.

and 40% copied), the WF-net discovered by the DiSCover
miner (shown in Fig. 11) contains 30 places, 64 transitions and
148 arcs, whereas the WF-net discovered by the Trace miner
contains 600 places, 1004 transitions and 2006 arcs (shown
in Fig. 12). Although both WF-nets are too complex to see

Fig. 11. Resulting WF-net of the DiSCover miner on the most complex
scenario of the PDC 2022 data set: Somewhat readable, offers some insights.

Fig. 12. Resulting WF-net of the Trace miner on the most complex scenario
of the PDC 2022 data set: Unreadable, offers no insights.

(m)any details, it is clear that the WF-net discovered by the
DiSCover miner is better readable and provides more insights
than the WF-net discovered by the Trace miner.

VI. CONCLUSION

This paper has introduced a miner that potentially can add
concurrency to commercial miners. Instead of discovering
a single state machine WF-net from the original directly-
follows graph, multiple state machine WF-nets are discovered



by this miner from multiple directly-follows graphs. The
idea here is that for each of these multiple directly-follows
graphs its activities do not exhibit concurrency anymore. As
a result, discovering a state machine WF-net from such a
directly-follows graph makes perfect sense. In a final step, the
discovered state machine WF-nets are merged into a single
WF-net, which brings concurrency back into the picture.

The most complex step in this approach is the generation
of the multiple directly-follows graphs, as this is searching for
maximal subsets of activities that are pairwise not concurrent.
Also, applying existing behavior-preserving reduction rules on
the discovered state machines and the merged WF-net may
take some time.

The approach has been implemented as a plugin in ProM
6.12, which has been tested on the data sets of the different
Process Discovery Contests. Results show that the DiSCover
miner is very competitive in these contests, and that it even
could have won the 2020 and 2021 editions of this contest.

An interesting idea for future work could be to add a
“concurrency slider” to the DiSCover miner. If the slider is
set to its lowest value, then the miner returns a state machine
WF-net that is generated from the original directly-follows
graph. If the slider is increased, the miners starts creating
multiple directly-follows graphs. As an example, it could have
a look at the two activities with back-and-forth edges that have
the largest combined weight in any directly-follows graph,
and replace this graph with the two directly-follows graphs
that result by removing one of these activities. The subsets
covered by these graphs may still exhibit some concurrency,
but the more the slider is increased, the more directly-follows
graphs are used, and in the end each of these directly-follows
graphs contains activities that are not concurrent. This way,
by increasing the slider, we increase the level of concurrency
in the resulting model.

Some readers may actually prefer the WF-net where the
different state machine WF-nets have not been merged over
the WF-net where they have been merged, as the former WF-
net may provide more insights. As an example, from Fig. 5 it is
straightforward to see that either activity e or activity f has to
occur, whereas from Fig. 6 this is not immediately clear. This
begs the question whether we need to merge the state machine
WF-nets at all. We could simply change the semantics of the
WF-nets in such a way that all transitions that correspond to
the same activity should occur synchronously: If one occurs,
then all others need to occur as well. This may result in WF-
nets that offer more insights to the user.

A final idea for future work is to create dedicated reduction
rules. Consider, for example, the WF-net shown in Fig. 10.
As noted, the four silent transition to the left and right of the
A FINALIZED+COMPLETE transition can be merged into a
single transition: If one of them fires, the other three should
fire as well. If we merge them, then the existing reduction are
capable of merging the four input places into a single input
place and the four output places into a single output place,
which makes the WF-net more simple and easier to under-
stand. Another possible reduction would be to merge the two

topmost silent transitions with the A DECLINE+COMPLETE
transition. Again, if one of them fires, then so should the
others.

REFERENCES

[1] W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster,
“Workflow mining: Discovering process models from event logs,” IEEE
Transactions on Knowledge and Data Engineering, vol. 16, no. 9, pp.
1128–1142, 2004.

[2] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
Block-structured Process Models from Event Logs: A Constructive
Approach,” in Applications and Theory of Petri Nets 2013, J. Colom
and J. Desel, Eds., vol. 7927, 2013, pp. 311–329.

[3] S. J. v. Zelst, B. F. v. Dongen, W. M. P. v. d. Aalst, and
H. M. W. Verbeek, “Discovering workflow nets using integer linear
programming,” Computing, vol. 100, no. 5, pp. 529–556, May 2018.
[Online]. Available: https://doi.org/10.1007/s00607-017-0582-5

[4] R. Bergenthum, “Prime miner - process discovery using prime event
structures,” in 2019 International Conference on Process Mining
(ICPM), 2019, pp. 41–48.

[5] L. L. Mannel and W. M. P. van der Aalst, “Finding uniwired petri
nets using est-miner,” in Business Process Management Workshops,
C. Di Francescomarino, R. Dijkman, and U. Zdun, Eds. Cham: Springer
International Publishing, 2019, pp. 224–237.

[6] T. Hildebrandt and R. R. Mukkamala, “Declarative event-based work-
flow as distributed dynamic condition response graphs,” PLACES,
vol. 69, 10 2011.

[7] J. Desel and J. Esparza, Free Choice Petri Nets, ser. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge, UK, 1995, vol. 40.

[8] A. Augusto, J. Carmona, and H. M. W. Verbeek, “Advanced process
mining,” in Process Mining Summerschool 2022, ser. Lecture Notes in
Business Information Processing (LNBIP), W. M. P. v. d. Aalst and
J. Carmona, Eds. Aachen, Germany: Springer, July 4-8 2022, p. (to
appear).

[9] W. M. P. van der Aalst, “The application of Petri nets to workflow
management,” The Journal of Circuits, Systems and Computers, vol. 8,
no. 1, pp. 21–66, 1998.

[10] J. L. Peterson, Petri net theory and the modeling of systems. Prentice-
Hall, Englewood Cliffs, 1981.

[11] W. Reisig and G. Rozenberg, Eds., Lectures on Petri Nets I: Basic
Models, vol. 1491, 1998.

[12] ——, Lectures on Petri Nets II: Applications, vol. 1492, 1998.
[13] W. M. P. van der Aalst, Process Mining: Data Science in Action, 2016.
[14] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceed-

ings of the IEEE, vol. 77, no. 4, pp. 541–580, April 1989.
[15] H. M. W. Verbeek, “Decomposed replay using hiding and reduction as

abstraction,” LNCS Transactions on Petri Nets and Other Models of Con-
currency (ToPNoC), vol. XII, pp. 166–186, 2017. [Online]. Available:
http://www.springerlink.com/content/f15t41545m061682/fulltext.pdf

[16] B. van Dongen. (2012, 4) BPI Chal-
lenge 2012. https://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-
75976070e91f. [Online]. Available: https://data.4tu.nl/articles/dataset/
BPI Challenge 2012/12689204

[17] J. J. Carmona, M. de Leoni, B. Depaire, and T. Jouck. (2021, 5) Process
Discovery Contest 2016. https://dx.doi.org/10.4121/14625912.v1. [On-
line]. Available: https://data.4tu.nl/articles/dataset/Process Discovery
Contest 2016/14625912

[18] ——. (2021, 5) Process Discovery Contest 2017.
https://dx.doi.org/10.4121/14625948.v1. [Online]. Available: https://
data.4tu.nl/articles/dataset/Process Discovery Contest 2017/14625948

[19] J. J. Carmona, M. de Leoni, and B. Depaire. (2021, 5) Process
Discovery Contest 2019. https://dx.doi.org/10.4121/14625996.v1. [On-
line]. Available: https://data.4tu.nl/articles/dataset/Process Discovery
Contest 2019/14625996

[20] H. M. W. Verbeek. (2021, 5) Process Discovery Contest 2020.
https://dx.doi.org/10.4121/14626020.v1. [Online]. Available: https://
data.4tu.nl/articles/dataset/Process Discovery Contest 2020/14626020

[21] ——. (2021, 10) Process Discovery Contest 2021.
https://dx.doi.org/10.4121/16803232.v1. [Online]. Available: https://
data.4tu.nl/articles/dataset/Process Discovery Contest 2021/16803232


