
Fast Conformance Analysis based on Activity Log
Abstraction

P.M. Dixit
Eindhoven University of Technology

Eindhoven, Netherlands
p.m.dixit@tue.nl

H.M.W. Verbeek
Eindhoven University of Technology

Eindhoven, Netherlands
h.m.w.verbeek@tue.nl

W.M.P. van der Aalst
RWTH, Aachen, Germany

Aachen, Germany
wvdaalst@pads.rwth-aachen.de

Abstract—Process mining techniques focus on bridging the gap
between activity logs and business process management. Process
discovery is a sub-field of process mining which uses activity
logs in order to discover process models. Some process discovery
techniques, such as interactive process discovery and genetic
algorithms, rely on the so-called conformance analysis. In such
techniques, process models are discovered in an incremental way,
and the quality of the process models is quantified by the results
of conformance analysis. State-of-the-art conformance analysis
techniques are typically optimized and devised for one-time use.
However, in process discovery settings which are incremental
in nature, it is imperative to have fast conformance analysis.
Moreover, the activity logs used for conformance analysis at each
stage remain the same. In this paper, we propose an approach
that exploits this fact in order to expedite conformance analysis
by approximating the conformance results. We use an abstracted
version of an activity log, which can be used to compare with
the changing (or new) process models in an incremental process
discovery setting. Our results show that the proposed technique is
able to outperform traditional conformance techniques in terms
of performance by approximating conformance scores.

Index Terms—process mining, conformance analysis, incre-
mental

I. INTRODUCTION

Process mining has become a key enabler for the control,
diagnosis and (re)design of processes in a BPM life cycle.
The execution histories of processes, called the activity logs,
can be extracted from the corresponding information systems.
For example, the activity log of an administrative process
can be extracted from an ERP system. These activity logs
are the key-enablers for the application of process mining
techniques. Broadly, process mining can be categorized into
(1) process discovery, and (2) conformance checking [1].
The aim of process discovery is to learn process models
using the information from the activity log. Conformance
checking techniques on the other hand, focus on finding the
goodness-of-fit of a pre-existing process model and the reality
as depicted by the activity log.

In an ideal world, the activity logs extracted from the infor-
mation systems would contain all the necessary information
needed by a process discovery algorithm in order to discover
the desired process model. However, in reality, this is seldom
the case. The activity logs can contain noisy information,
due to data quality issues during logging or processing of
the activity log. Activity logs can also contain incomplete

cases. Hence, the discovery techniques have to deal with
such noisy and/or incomplete information from the activity
logs extracted from the information systems. State-of-the-art
process discovery techniques typically try to overcome such
inaccuracies from the activity log, while using other relevant
information from the activity logs, in order to discover process
models.

Process discovery techniques can use the information from
the activity log in three ways. First, the process discovery
techniques extract some patterns, which are then translated
into process models directly. Figure 1a shows the typical
overview of such algorithms. Second, the discovery algorithms
incrementally discover newer versions of process models,
starting with an arbitrary process model. Genetic algorithms
are a prime example of this technique, and work as shown
in Figure 1b. Every process model discovered is compared
with the activity log to validate the goodness of the process
model. Third, the discovery approach could be interactive,
and involve a human-in-the-loop (see Figure 1c). In such
techniques, the user can build-up a process model, starting
with an initially empty process model. Every action of the user
during interactive process discovery leads to a new variant of a
process model, which can be evaluated against the activity log.
Since the process models are generated in an incremental way
for both genetic and interactive process discovery techniques,
we refer to them as incremental discovery techniques.

Typically, there are four quality dimensions of process mi-
ning (fitness, precision, generalization and simplicity [2]), that
are used as the guiding principle by the incremental process
discovery techniques. The fitness dimension determines how
much behavior from the activity log is allowed by a process
model. The precision dimension on the other hand determines
how much extra behavior does a process model allow which is
not present in the activity log. The generalization dimension
evaluates the degree to which the discovered model is generic,
i.e., the extent to which it is coherent with some unseen
future behavior. Finally, the simplicity dimension addresses
the comprehensibility of the discovered model. There is no
real consensus on the best way to measure generalization and
simplicity, and multiple viewpoints are possible. However,
there is more argument on fitness and precision dimensions
and these can be computed entirely based on the activity
log. The incremental process discovery techniques rely on the

Patterns

Text

Text

TextActivity
Log

(a) Process discovery techniques which ab-
stract knowledge from the activity log, and
then use it for deducing process model.

 ...

Conformance

Conformance

 G1 G2

Activity
Log

(b) Genetic algorithms which construct process
models first, and then compare it with the
activity log. G1, G2,... are the 1st and 2nd

generations resp., and each generation contain
multiple process models.

Conformance

Conformance

...

Activity
Log

(c) Interactive process discovery set-
ting wherein the user interactively mo-
dels/discovers a process model. Bigger
process models are obtained starting with
smaller process models. Every process
model variant is compared to the activity
log.

Fig. 1: Usage of activity logs by different process discovery techniques.

outcome of conformance techniques for these dimensions.

Traditionally, conformance techniques are used to analyze
how well a pre-existing process model conforms to the reality
as depicted by the activity logs. Hence, much emphasis is
put on the accuracy of the results. Traditionally, conformance
results can be used to perform analysis such as compliance
issues in the process behavior. Furthermore, conformance
results can also be used to analyze the performance of the
process in reality, for e.g., to find out where the possible bott-
lenecks in the process are. However, in the case of incremental
process discovery techniques, the in-depth analysis offered
by conformance techniques are not very relevant. It can be
argued that the accuracy of the conformance outcome can be
compromised for speed to a certain extent. For e.g., in the case
of genetic discovery techniques, a multitude of process models
can be produced in each generation. Each of these process
models need to be compared with the activity log, in order to
judge the quality of the process model. Hence, it is important
to calculate the conformance (i.e. fitness and precision) scores
for each of the process models in an efficient way. A similar
argument holds in an interactive process discovery setting.
Typically, in such settings, the waiting times suffered by the
user should be minimal. That is, it is undesirable for the user
to wait for a long time to get the conformance scores upon
making a change in the process model.

In order to address these issues pertaining to the usage of
conformance techniques in the context of incremental process
discovery, we propose a novel framework based on activity
log abstraction for conformance checking. In the context

of incremental process discovery, even though the process
model(s) changes over time, the activity log remains the same.
Hence, it is not necessary to go through the entire activity log
again and again in order to perform conformance analysis.
In this paper, we exploit this fact. The main contribution of
this paper is to discuss fast and approximate conformance
calculations that can be used to enable efficient incremental
process discovery, without losing too much on the accuracy
of the results.

The rest of the paper is structured as follows. In Section II
we discuss the related work from the literature that is relevant
to our approach. In Section III we provide the preliminaries,
followed by the details of the proposed approach in Section IV.
In Section V we evaluate our approach by comparing it with
several state-of-the-art techniques, followed by concluding
remarks and future directions in Section VI.

II. RELATED WORK

The work presented in this paper centers around proposing
faster conformance analysis in order to enable process dis-
covery based on incremental approaches. Since the scope is
conformance analysis rather than process discovery itself, in
this section we discuss techniques from literature which pro-
pose conformance analysis in the context of process mining,
that are comparable to our technique. Conformance checking
techniques typically match the behavior of the activity logs
with the behavior as depicted by process models. [3] was
among the first one’s to propose conformance checking in
the context of process mining using the token based replay
in Petri nets. Conformance checking techniques have been

developed for procedural models. For example, alignment-
based conformance checking techniques such as [4]–[6] have
been proposed that aim to optimally align the behavior of
activity traces and the possible process model execution tra-
ces. It should be noted that the problem of conformance
checking is not restricted by the so-called procedural pro-
cess models, or traditional information systems based activity
logs. Some techniques address conformance checking from
other perspectives such as natural language processing, formal
methods, real time setting etc. [7]–[11]. However, the main
focus of most of these techniques is to provide accurate
conformance results. And hence, there is not a lot of emphasis
on the performance of the technique itself. Furthermore, these
techniques require scanning of the complete activity log in
order to perform conformance. This is not ideal in a process
discovery setting which is incremental in nature and would
require conformance checking in each incremental step, as
the performance of the overall system would be drastically
impacted if the size of the activity log is very large. There
have been specialized strategies proposed to incrementally
repair alignments in the context of Evolutionary Tree Miner
(ETM) algorithm [12]. However, the class of process models
supported by this approach is limited to block-structured
process models (process trees).

There are also techniques proposed in order to improve
the performance of calculating conformance of a process
model and an activity log. Many of these techniques use
the so-called divide-and-conquer strategy [13]–[17]. The idea
behind these techniques is to decompose a process model into
various sub-models based on a specific decomposition strategy,
and then to compute alignments on the smaller model (and
a corresponding smaller log) and aggregate the information
across all the models. Another strategy to improve the compu-
tation time of conformance analysis is by using the Projected
Conformance Checking technique [18], which projects process
models and activity logs onto a subset of activities, and
aggregates the results over all combinations of activity subsets.
In our approach, we choose a similar direction. However, we
first abstract information from the activity logs, and then use
this abstracted information in order to calculate conformance
on a set of projected activity combinations. We argue that our
approach is faster by not having to scan through the entire
activity log during every stage (step) of incremental process
discovery. This distinguishes it from other approaches.

III. PRELIMINARIES

In this section we discuss some preliminaries used throug-
hout the paper. A bag over some set S is a function from S
to the natural numbers that assigns only a finite number of
elements from S a positive value. For a bag B over set S and
s ∈ S, B(s) denotes the number of occurrences of s in B,
often called the cardinality of s in B. Note that a finite set
of elements of S is also a bag over S, namely the function
yielding 1 for every element in the set and 0 otherwise. We
use brackets to explicitly enumerate a bag and superscripts
to denote cardinalities. For example [a2, b3, c] denotes a bag

TABLE I: An example activity log

Activity trace Frequency

〈a, b, c, d〉 1
〈a, b, c, c, d〉 5
〈a, b, c, c, c, d〉 1
〈a, e, c, c, d〉 1
〈a, e, c, d〉 6
〈a, c, b, d〉 3
〈a, c, e, c, c, c, d〉 1

p1

a

t1 p2

c

t2 p3

d
t3 p4

p5

b

t4 p6

e

t5

e
t6

Fig. 2: An example workflow net.

which contains the elements a, b and c 2, 3 and 1 times resp.
Bag B is a subbag of bag B′, denoted B ≤ B′, iff, for
all s ∈ S, B(s) ≤ B′(s). Having defined bags, we now
discuss activity logs, workflow nets and fitness and precision
in process mining.

A. Activity Logs

Information systems record the information related to the
execution of processes, using the so-called events. Events are
key-value pairs, which contain values for several attributes
related to the event. For e.g., a recorded event can contain
information related to the attribute resource, which records
the resource responsible for the particular event. An event also
contains key value pair for attributes which map the activity to
which the event belongs, and the time when the activity was
performed. We can use these attributes to extract the so-called
activity logs. An activity log is thus a bag of sequences of
activities, wherein the ordering of sequences is extracted from
the time attribute of the events. Each sequence of activities
is called a trace. Table I shows an example of an activity log
which contains 7 different activity traces and 18 traces in total.
Furthermore, the activity log contains 5 unique activities and
83 activities in total [1].

B. Workflow nets

A workflow net is a Petri net containing a source place
and a sink place. Figure 2 shows an example of a workflow
net [19], with the source place p1 and the sink place p4. We
use the regular Petri net semantics for workflow nets [20].
Figure 2 also shows the start state of the workflow net, which
corresponds to one token (the black dot) in place p1. This
state enables the transition t1, as all its input places contain a
token. As a result transition t1 may fire, which would result in
removing a token from every input place and adding a token

to every output place. As a result in the resulting state, the
places p2 and p5 would contain a token each. This new state
would enable transitions t2, t4 and t5, etc.

The visible transitions in this net are labeled with an activity
(like t1 is labeled a); the invisible transitions are not labeled
(like t6). If we consider only the accepting firing sequences
of the workflow net, that is the firing sequences that start
with a token in [p1] and end with a token in [p4], then
it is straightforward to check that every activity trace from
the example log in Table I can be replayed in the example
workflow net of Figure 2. For example, the activity sequence
〈a, e, c, c, d〉 can be replayed by firing the transitions t1, t5,
t2, t6, t2, and t3 in the given order. Note that as invisible
transitions are not related to any activity, they do not contribute
to the resulting activity sequence, only the visible activities do.
Furthermore, in our approach, we only deal with the class of
safe workflow nets. That is, at any given state, each place in
the workflow net can carry at-most 1 token.

C. Fitness and Precision

An indication of fitness and precision metrics can be obtai-
ned using the activity log and the process model. Both the
activity log and the process model describe a language, i.e. all
the observed behavior in the activity log, and all the allowable
behavior by a process model. Fitness metric indicates how
much behavior from the activity log is allowed by a process
model. On the other hand, precision metric indicates how
much extra behavior does a process model allow that is not
seen in the activity log. It should be noted that, for constructs
such as loops, a process model can allow for infinite behavior.
Hence, the precision metric should inherently also account for
such behavior.

In this paper, we use the so-called (unary and binary)
footprint patterns to estimate the fitness and precision metrics.
In the case of fitness, we also consider the frequencies of
patterns, as will become evident in the sections to follow.

IV. APPROACH

We begin by first introducing a framework to enable fast
conformance analysis, based on the abstraction of the activity
log. This is followed by instantiation of the proposed frame-
work.

Activity
Log

M'

M''

M'''

M
L'''

L''

L'

Fig. 3: The traditional divide-and-conquer approach. Each
time conformance analysis needs to be performed, the process
model as well as the activity log needs to be decomposed and
compared.

A. Framework

The central idea behind our approach is motivated by the
various divide and conquer strategies which were introduced
to speed-up conformance calculations. Figure 3 shows a high-
level overview of how these techniques typically work. To
speed-up the conformance analysis approach, these techniques
split up one big conformance problem into several smaller
problems. That is, instead of checking the conformance of the
complete process model in one go, the process model is split
up into several smaller process fragments. Next, the activity
log is also split up corresponding to each of these process
fragments. Then, the process fragments are compared with
the smaller activity logs in order to calculate the conformance
per process fragment. Finally, the overall conformance score
is calculated by aggregating the conformance score of each
individual process fragment.

The traditional divide-and-conquer-based conformance
techniques can offer sufficient speed-up when conformance
needs to be calculated only once. However, in our case, the
conformance scores have to be calculated several times when
the process model changes (or is newly created), e.g. in the
process discovery settings that are incremental in nature. It
should be noted that in such scenarios, the activity log remains
unchanged. Hence, in our approach, instead of splitting the
activity log into several smaller logs based on each process
fragment, we pre-compute a meta-structure which abstracts
the activity log. This meta-structure is then used to calculate
conformance score. This structure is computed only once,
and whilst calculating the conformance, the time spent on
processing of the activity log is saved. This is especially handy
when the activity logs are very big, and the conformance
algorithms spend a lot of time to process the activity log, for
e.g. during each step (or for each model) of the incremental
process discovery techniques. The overview of our approach
is shown in Figure 4.

The proposed framework could be instantiated in multiple
ways. For example, declare-like constructs can be extracted
from activity logs, and then used for computing conformance
with a declarative process model. Alternatively, declare-like
constructs extracted from the activity logs can also be com-
pared with declare-like constructs extracted from a procedural
process model. Another solution could be to use the so-called

Activity
Log

M'

M''

M'''

M
L'''

L''

L'

Changing Process Models

Fig. 4: The divide-and-conquer strategy based on activity log
abstraction proposed in this paper. Activity logs are abstracted
once, and then compared with process models that are chan-
ging, or with newer process models.

footprint matrix from an activity log, in order to compute
the directly-follows and precedes relations between activities.
This footprint matrix can then be compared with the process
model to calculate conformance. It should be noted that in
scenarios such as interactive process discovery, the process
model is built-up interactively, starting with an initial empty
process model. Since all the process activities would not be
present until the complete process model is constructed, the
directly follows/precedes relations would be inadequate. An
alternative could be the usage of eventually follows/precedes
relation. However, it should be noted that the eventually
follows/precedes relation may still be unable to cope very well
with looping instances in the traces. We now discuss a solution
of the framework which builds upon the footprint relations.

B. Application of the framework

In this section we discuss a solution of the approach. We
begin by first discussing the abstraction of activity logs based
on the so-called footprint patterns, which is central to our
approach. This is followed by extraction of footprint patterns
from a process model. Finally, we discuss the comparison of
footprint patterns of process models and the footprint patterns
of activity logs (i.e. abstracted activity logs) to calculate
conformance.

1) Footprint patterns from activity log: Information from
the activity logs can be abstracted in multiple ways. In our
approach, we calculate the so-called footprint patterns from
the activity log. The footprint pattern of an activity log is
composed of two types: (i) unary footprint patterns and (ii)
binary footprint patterns.
Unary footprint patterns are obtained by projecting a log

on a single activity. A unary footprint pattern is a bag
of projected traces on an activity. We project a log on
an activity by removing all the other activities from the
activity log. For e.g., the bag of unary footprint patterns
of an activity c in the activity log of Table I is [〈c〉10, 〈c,
c〉6, 〈c, c, c〉, 〈c, c, c, c〉]. The unary footprint pattern thus
considers how often an activity is repeated a particular
number of times.

Binary footprint patterns are used to calculate relations be-
tween activities in a pair-wise manner, for a given trace.
We introduce this using an example. Consider a pair of

x y

σ1 = x

σn = x

σi, σi+1 = x

σi = x, σi+1 = y

σi = y, σi+1 = x

σi, σi+1 = y

σ1 = y

σn = y

Fig. 5: Binary footprint calculation mechanism for a trace σ.

TABLE II: Bag of footprint patterns on the complete log for
the pair (c, e) from Table I.

Binary footprint pattern Frequency

c e× 10

c e 1

c e 6

c e 1

activities (x, y) and a trace σ = 〈σ1, σ2, ..., σn〉, such that
∀1≤i≤n(σi = x ∨ σi = y). Then, for any i, the binary
footprint pattern of σ is calculated as shown in Figure 5.
An arc from the binary footprint pattern is removed, if
the condition mentioned on the arc is not satisfied. The
1st activity of trace σ can either be x or y. Similarly, the
last activity can either be x or y. Hence, for any given
trace, there could only be two dashed arcs, one (incoming
arc) related to the first activity, and one (outgoing arc)
related to the last activity of the trace. Figure 6 shows
all the possible footprint patterns with some example
traces, when the first activity of the trace is fixed to x,
i.e. σ1 = x. Note that for a given activity sequence we
use the footprint pattern with lowest number of arcs. For
e.g., consider a trace 〈x, y, y〉. Even though the footprint
patterns shown in Figure 6k or Figure 6l are valid for such
a trace sequence, Figure 6e is chosen as the appropriate
footprint pattern as it contains the lowest number of
arcs. Unlike the unary footprint patterns, which record
the number of times an activity is repeated, the binary
footprint patterns do not record the number of times an
activity is repeated. Also, when only one activity occurs
in a trace sequence (Figure 6a), then the repetition of
activity is considered irrelevant for a binary footprint
pattern. We can thus obtain binary footprint patterns for
all the pairs of activities in the activity log, by projecting
the activity log on pairs of activities. In order to project
an activity log on a pair of activities, we simply remove
the activities from the activity log, which are not a part
of the pair. Using such a projected activity log, we can
then compute binary footprint patterns for all the activity
pairs of the entire activity log. Binary footprint patterns
for the entire activity log are constructed as a bag of
binary footprint patterns. For example, consider a pair (c,
e) from the activity log of Table I. The projected activity
log for the pair (c, e) is [〈c〉4, 〈c, c〉5, 〈c, c, c〉1, 〈e, c, c, c〉,

x y×

(a) 〈x〉, 〈x, x〉
· · ·

x y

(b) 〈x, y〉

x y

(c) 〈x, y, x, y〉, 〈x, y, x, y,
x, y〉 · · ·

x y

(d) 〈x, y, x〉, 〈x, y, x, y, x〉
· · ·

x y

(e) 〈x, x, y〉, 〈x, x, x, y〉 · · ·

x y

(f) 〈x, y, y〉, 〈x, y, y, y〉 · · ·

x y

(g) 〈x, x, y, x, y〉, 〈x, x, y,
x, x, y〉 · · ·

x y

(h) 〈x, x, y, x〉, 〈x, x, y, x,
x, y, x〉 · · ·

x y

(i) 〈x, y, y, x, y〉, 〈x, y, y, x,
y, y, x, y〉 · · ·

x y

(j) 〈x, y, y, x〉, 〈x, y, y, x, y,
x〉 · · ·

x y

(k) 〈x, x, y, y〉, 〈x, x, x, y,
y〉 · · ·

x y

(l) 〈x, x, y, y, x, y〉, 〈x, x, x,
y, y, x, x, y, y〉 · · ·

x y

(m) 〈x, x, y, y, x〉, 〈x, x, x,
y, y, x, x, y, y, x〉 · · ·

Fig. 6: Binary footprint patterns when the activity traces start with x.

〈e, c〉6, 〈c, e, c, c, c〉]. The bag of binary footprint patterns
of the pair (c, e) over the projected activity log is shown
in Table II.

The footprint patterns of activity log are calculated only
once in our approach.

C. Footprint patterns of a process model

We now discuss the computation of footprint patterns from
the process models.

Unary footprint patterns In a process model, the unary foot-
print pattern corresponding to an activity x, is a pair of
values (Mmin

x ,Mmax
x) calculated as follows:

1) Project a process model on x. This is done by making
all the activities other than x invisible.

2) We use a minimal trace-based replay to calculate the
Xmin and Xmax values. Lets call a trace σm = 〈x,
· · · , x〉, where |σm| =m.

3) Check whether it is possible to replay an empty trace
σ0 =〈〉 on the process model. If it is possible, then set
Mmin

x = 0. Otherwise, check if the replay of σ1 = 〈x〉
is possible on the projected model. If yes, then set
Mmin

x = 1, and so-on.
4) Next, count the number of visible transitions labeled

with the activity x. Let this number be n. Check if a
trace σn+1 can be replayed on the projected model. If
it is possible, then set Mmax

x = ∞. Otherwise, check
if replay of σn is possible on the projected model. If
it is possible, then set Mmax

x = n, and so-on.

The unary footprint pair for the process model of Figure 7
corresponding to activity c is (1,∞), whereas the unary
footprint pair of the process model of Figure 7 correspon-
ding to the activity e is (0, 1).

Binary footprint patterns are computed based on pairs of
activity combinations, for all the activities present in the
process model. For any pair of activities, we calculate
a set of binary footprint patterns which is allowed by a
process model. In order to calculate this set, we use the
following steps:

1) Project the pair of selected activities on the process
model. This is done by making all the transitions which
are not part of the activity pair invisible. For example,
Figure 7 shows the projection for activity pair (c,
e) on the process model as shown by Figure 2. We
can further use language preserving reduction rules, to
reduce a process model in order to remove unnecessary
nodes [21].

2) Again, we use some minimal traces corresponding to
each binary footprint pattern, and try to replay them on
the projected process model. For example, in order to
verify if the binary footprint pattern of Figure 6a holds
for a process model, a trace 〈x〉 is run over the process
model. If the process completes successfully, i.e. the
end state is reached, then the binary footprint pattern
as shown in Figure 6a is added to the set of binary
footprint patterns for a pair. These minimal traces for
each binary footprint pattern are the first traces of the
corresponding binary footprint pattern from Figure 6.

p1

a
t1 p2

c

t2 p3

d
t3 p4

p5

b
t4

p6

e

t5

e
t6

Fig. 7: Projecting activities (c, e) on Figure 2.

The set of binary footprint patterns for the activity pair (c
,e) and the workflow net as shown in Figure 7, is shown
in Figure 8 .

D. Comparing Process Model and Activity Logs

We compare the footprint patterns of activity logs and
process models in order to calculate conformance of an activity
log with a process model, based on two metrics: fitness and
precision. It should be noted that, in the case of activity
logs, the footprints patterns are computed in terms of bags,
whereas in the case of process models, the footprint patterns
are computed in terms of sets (for binary footprints) or pairs
(for unary footprints).

1) Fitness: Fitness score reflects how much behavior from
the activity log is represented by the process model. In our
case, we first calculate the individual fitness of each activity
based on the unary footprint patterns, as well as the fitness
of activity pairs using the binary footprint patterns for all
the activity combinations, and then aggregate the results to
calculate the overall fitness.
Fitness based on unary footprint patterns Let x be an

activity from an activity log. Let L1
x be the bag of unary

footprint patterns from the activity log for the activity x.
Let M1

x = (Mmin
x ,Mmax

x) be the unary footprint pattern
from the process model for the activity x. Then the fitness
f 1x of the activity x based on unary footprint patterns is
calculated as follows:

f 1x =
ΣP∈L1

x∧Mmin
x ≤|P |≤Mmax

x
L1
x(P)

ΣP∈L1
x
L1
x(P)

Using this, the fitness of activity c for the activity log as
shown in Table I and process model as shown in Figure 2
is f 1(c) = 1.

Fitness based on binary footprint patterns Let (x, y) be
an activity pair. Let L2

(x,y) be the bag of binary footprint
patterns from the activity log for the activity pair (x, y).
Let M2

(x,y) be the set of binary footprint patterns from
the process model for the pair (x, y). Then the fitness
f 2(x,y) of the activity pair (x, y) based on binary footprint
patterns is calculated as follows:

f 2(x,y) =
ΣP∈L2

(x,y)
∧P∈M2

(x,y)
L2
(x,y)(P)

ΣP∈L2
(x,y)

L2
(x,y)(P)

c e× c e c e

c e c e c e

Fig. 8: Set of footprint patterns of the process model as shown
in Figure 7.

Using this, the fitness score for the activity pair (c, e)
based on the binary footprint patterns of Table II and
Figure 8 is f 2(c,e) = 1.

The fitness of the entire log is calculated as the average
of all the individual finesses for all the pairs of activity
combinations (in case of binary footprint patterns) as well
as all the activities (in case of unary footprint patterns). The
fitness of the complete activity log as shown in Table I and
the process model as shown in Figure 2 using binary footprint
patterns and unary footprint patterns is 1.

2) Precision: Precision score reflects how much extra beha-
vior a process model allows, when compared with the activity
log. Similar to the fitness scores, we first compute the precision
value of every activity and every activity pair by comparing
the unary footprint patterns and the binary footprint patterns
as follows:
Precision based on unary footprint patterns Let x be an

activity from an activity log. Let L1
x be the bag of unary

footprint patterns from the activity log corresponding to
the activity x. Let M1

x = (Mmin
x ,Mmax

x) be the unary
footprint pattern from the process model for the activity
x. Then the precision p1

x of activity x is calculated as
follows:

p1
x =

Lm

Mm

where, Lm is the length of longest trace in L1
x, i.e., Lm =

|P | s.t. P ∈ L1
x ∧ ∀P ′∈L1

x
|P ′| ≤ |P | and

Mm =

Lm if Lm > Mmin
x

Lm + 1 if Mmax
x =∞

Mmax
x otherwise

In order to avoid division by ∞, we use an upper bound
for Mm, as Lm + 1, when Mmax

x = ∞. This also
penalizes shorter loops observations from the activity log,
when compared to longer the loop observations. Using
this, the precision scores of activity c and activity e for the
activity log as shown in Table I and the process model as
shown in Figure 2 are p1

c = 0.8 and p1
e = 1 respectively.

Precision based on binary footprint patterns Let (x, y) be
an activity pair. Let L2

(x,y) be the bag of footprint patterns
from the activity log for the activity pair (x, y). Let
M2

(x,y) be the set of footprint patterns from the process

model for pair (x, y). Then the precision p2
(x,y) of the

activity pair (x, y) is calculated as follows:

p2
(x,y) =

∑
P∈M2

(x,y)
∧P∈L2

(x,y)
1

|M2
(x,y)|

The precision of the pair (c, e) calculated using Table II
and Figure 8 is p2

(c,e) = 0.67.
Precision of the overall process model with a given activity

log is then taken as an average of all the individual precision
scores (like with fitness). The precision of the process model
as shown in Figure 2 and the activity log as shown in Table I
is 0.94.

It should be noted that in the binary patterns for process
models, our approach does not consider duplicate occurrences
of activities. That is, by considering minimal traces in order
to extract binary footprint patterns, the approach ignores
the possible duplication of activities in the process model.
However, to a certain extent, we address this by using unary
patterns for single activities, which considers frequencies of
the activity log, as well as the minimum and maximum
possible occurrences from the process model.

V. EVALUATION

We evaluate our approach based on the performance aspect
and the accuracy aspect, by comparing it with state-of-the-
art approaches which are relevant to our work. The state-
of-the-art techniques used for comparing fitness scores are:
the decomposed replay technique [14], the recomposed replay
technique [15], the projected conformance checking [18] fra-
mework (with k = 2), and the alignment-based conformance
technique [5]. The state-of-the-art techniques used for compa-
ring precision scores are: the projected conformance checking
[18] framework (with k = 2), and the escaping edges based
ETC 1-align precision [22]. We performed the evaluation using
5 publicly available real-life activity logs: (i) the Sepsis activity
log1 containing the workflow data for roughly 1000 patients
suffering from Sepsis in a hospital, (ii) BPIC 2012-A2 and
(iii) BPIC 2012-O3 activity logs which are the application
and the offer sub-logs resp. of a loan application process
in Dutch financial institute, (iv) BPIC 20154 filtered activity
log, which contains top 25 activities of a building permit
application for one of the municipalities in the Netherlands,
and (v) a hospital billing activity log5, containing data from
the financial modules of the ERP system of a regional hospital.
We use the inductive miner-infrequent algorithm [23], in order
to discover process models from activity logs. By default,
discovery techniques such as the inductive miner and the ILP
miner [24] aim at discovering fully fitting process models, i.e.
process models which have a fitness value of 1. As we are
interested in comparing the fitness and precision values across

1https://data.4tu.nl/repository/uuid:915d2bfb-7e84-49ad-a286-
dc35f063a460

2https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
3https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
4https://doi.org/10.4121/uuid:a0addfda-2044-4541-a450-fdcc9fe16d17
5https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741

different conformance algorithms, we configure the inductive
miner infrequent algorithm to be used in three settings: (i)
ind0: a setting assuming 0 noise, which guarantees a fitness
of 1, (ii) ind5: a setting with noise threshold set at 50% noise,
and (iii) ind10: a setting with noise threshold set at 100%. We
begin by discussing the performance evaluation.

A. Performance

The primary objective of the approach proposed in this
paper is to enable faster conformance analysis which would be
useful in scenarios such as incremental or interactive process
discovery. The extraction of footprint patterns (unary and
binary) from the activity logs would serve as an input to the
conformance checking during incremental process discovery,
and is required to be done only once. Hence, we did not
use this processing step during comparison. This initial step
took in between 10ms to 2500ms, depending on the type of
activity log. Contrary to this, other conformance techniques
require the usage of the complete activity log during each
step/stage of incremental process discovery. Figure 9 shows the
performance of different approaches, in milli-seconds. Note
that the scale is logarithmic. The computation time for the
PCC framework [18] and our approach includes the calculation
time for both the fitness and precision scores. The decomposed
replay, recomposed replay and alignment-based replay are
used to calculate only the fitness value. The ETC 1-align
technique is used to calculate the precision value. It should be
noted that, the ETC 1-align technique requires an alignment
as an input for calculating the precision value. However, the
plots of Figure 9 do not show the time taken for computing
alignments in the case of ETC 1-align. It is easy to see that
our approach is able to outperform most of the techniques for
calculating faster conformance, for both fitness and precision
scores. The PCC framework is the closest in terms of compute
time compared to our approach. In settings such as interactive
process discovery, the waiting times for the end user should
be as small as possible. Waiting times of most state-of-the-art
techniques can be greater than 10 seconds, and hence become
unacceptable.

B. Fitness and Precision Comparison

In this sub-section, we compare the outcome of our result,
in terms of fitness and precision scores, by comparing it
with other approaches. All the techniques considered in this
evaluation, calculate the fitness and precision scores in the
(inclusive) range of 0-to-1. Higher scores indicate better the
fitness/precision. Hence, a fitness score of 1 would indicate a
perfect fitness/precision score. Moreover, the decomposed and
recomposed replay techniques do not give a singular value for
fitness scores, but instead give a lower bound and higher bound
for fitness. The comparison outcome of fitness scores of all
the techniques is shown in Figure 10. Similarly, the precision
outcomes of various techniques is shown in Figure 11. As
discussed earlier, we considered three process models for
each type of activity log discovered using the inductive miner
infrequent at various settings. The inductive miner infrequent

T P D R A E

102

103

104

lo
ga

ri
th

m
ic

tim
e

(m
s)

(a) Sepsis.

T P D R A E
101

102

103

lo
ga

ri
th

m
ic

tim
e

(m
s)

(b) BPIC 2012-A.

T P D R A E

102

103

lo
ga

ri
th

m
ic

tim
e

(m
s)

(c) BPIC 2012-O.

T P D R A E

103

104

lo
ga

ri
th

m
ic

tim
e

(m
s)

(d) BPIC 2015.

T P D R A E

103

104

lo
ga

ri
th

m
ic

tim
e

(m
s)

(e) Hospital billing.

Fig. 9: Time (logarithmic) comparison for various approaches: T - This paper, P - PCC framework (k = 2), D - Decomposed
Replay, R - Recomposed Replay, A - Alignment-based replay, E - ETC 1-align precision.

T A P DL DH RL RH
0

0.5

1

fit
ne

ss

i0 i50 i100

(a) Sepsis.

T A P DL DH RL RH
0

0.5

1

fit
ne

ss

i0 i50 i100

(b) BPIC 2012-A.

T A P DL DH RL RH
0

0.5

1

fit
ne

ss

i0 i50 i100

(c) BPIC 2012-O.

T A P DL DH RL RH
0

0.5

1

fit
ne

ss

i0 i50 i100

(d) BPIC 2015.

T A P DL DH RL RH
0

0.5

1

fit
ne

ss

i0 i50 i100

(e) Hospital billing.

Fig. 10: Fitness values comparison for various approaches: T - This paper, A - Alignment-based replay, P - PCC framework
(k = 2), DL - Decomposed Replay Lower Bound, DH - Decomposed Replay Higher Bound, RL - Recomposed Replay Lower
Bound, RH - Recomposed Replay Higher Bound. The legends indicate the process models considered for calculating fitness,
discovered using the inductive miner infrequent technique, such that: (i) i0 - noise threshold set to 0, (ii) i50 - noise threshold
set to 50% (iii) i100 - noise threshold set to 100%.

This ETC PCC
0

0.2

0.4

0.6

0.8

1

pr
ec

is
io

n

i0 i50 i100

(a) Sepsis.

This ETC PCC
0

0.5

1

pr
ec

is
io

n

i0 i50 i100

(b) BPIC 2012-A.

This ETC PCC
0

0.5

1

pr
ec

is
io

n

i0 i50 i100

(c) BPIC 2012-O.

This ETC PCC
0

0.2

0.4

0.6

pr
ec

is
io

n

i0 i50 i100

(d) BPIC 2015.

This ETC PCC
0

0.2

0.4

0.6

0.8

1

pr
ec

is
io

n

i0 i50 i100

(e) Hospital billing.

Fig. 11: Precision values comparison for various approaches. The legends indicate the process models considered for calculating
precision, discovered using the inductive miner infrequent technique, such that: (i) i0 - noise threshold set to 0, (ii) i50 - noise
threshold set to 50% (iii) i100 - noise threshold set to 100%.

guarantees that a process model discovered with a setting of no noise (i.e., noise threshold set to 0), are perfectly fitting

with the activity log. This is also evident in all the fitness
scores of all the process models. As the noise threshold is
increased, the inductive miner restricts uncommon behavior.
Hence while increasing the noise threshold the fitness should
drop. This is indeed the trend that is observed across the fitness
measures for all the techniques (including ours). Moreover,
it can be seen that for most of the scenarios, the fitness
scores of our technique are extremely close to the alignment-
based replay technique, which can be considered as a baseline
for fitness scores. In a similar way, it is quite intuitive to
note that as the process models become more restricted (with
higher noise threshold), the precision of the process model
increases. The PCC framework and our approach typically
have a similar precision value, as shown in Figure 11, owing to
some overlap of the two approaches in terms of calculating the
precision scores. Even though the results are approximated in
our approach, the fitness and precision scores computed using
our approach still provide a good indication in comparison
to the fitness and precision scores as computed by other
approaches. Moreover, by abstracting the activity log using
footprint patterns, our approach is able to compute these
results in a much faster way.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to enable faster
conformance analysis by abstracting information from the
activity logs using footprint patterns. Furthermore, we pre-
sented a way to extract similar footprint patterns from the
process models, and also presented a way to compare the
footprint patterns from the activity logs with the footprint
patterns from the process models, in order to deduce the
fitness and precision scores. As shown in the evaluation, by
re-using the pre-calculated footprint patterns of the activity
log, we improve the performance times of calculating the
conformance between a process model and the activity log.
Furthermore, the approximated conformance results calculated
using our technique are comparable to many state-of-the-
art techniques. Hence, we argue that our technique is much
more suited for computing conformance in the context of
process discovery techniques which are incremental in nature,
such as the genetic algorithms, and human-in-the-loop process
discovery, and wherein the activity log remains unchanged in
different steps/stages of the process discovery. In the future,
we would like to extend our approach in order to also consider
frequencies of self-loops in binary footprint patterns directly.
Furthermore, we would like to allow the possibility for a user
to influence the conformance, by adding or removing footprint
patterns, thereby incorporating user’s domain knowledge.

REFERENCES

[1] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second
Edition. Springer, 2016.

[2] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst,
“Quality dimensions in process discovery: The importance of fitness,
precision, generalization and simplicity,” Int. J. Cooperative Inf. Syst.,
vol. 23, no. 1, 2014.

[3] A. Rozinat and W. M. P. van der Aalst, “Conformance checking of
processes based on monitoring real behavior,” Information Systems,
vol. 33, no. 1, pp. 64 – 95, 2008.

[4] A. Adriansyah, B. F. van Dongen, and W. M. P. van der Aalst,
“Conformance checking using cost-based fitness analysis,” in Enterprise
Distributed Object Computing Conference (EDOC), 2011 15th IEEE
International. IEEE, 2011, pp. 55–64.

[5] ——, “Towards robust conformance checking,” in Business Process
Management Workshops, ser. Lecture Notes in Business Information
Processing. Springer Berlin Heidelberg, 2011, vol. 66, pp. 122–133.

[6] T. Chatain and J. Carmona, “Anti-alignments in conformance checking
– the dark side of process models,” in Application and Theory of Petri
Nets and Concurrency, F. Kordon and D. Moldt, Eds. Cham: Springer
International Publishing, 2016, pp. 240–258.

[7] J. Carmona, The Alignment of Formal, Structured and Unstructured
Process Descriptions. Cham: Springer International Publishing, 2017,
pp. 3–11.

[8] M. De Leoni, F. M. Maggi, and W. M. P. van der Aalst, “Aligning
event logs and declarative process models for conformance checking,”
in Business Process Management. Springer, 2012, pp. 82–97.

[9] F. Taymouri and J. Carmona, A Recursive Paradigm for Aligning Ob-
served Behavior of Large Structured Process Models. Cham: Springer
International Publishing, 2016, pp. 197–214.

[10] S. K. L. M. vanden Broucke, J. Munoz-Gama, J. Carmona, B. Baesens,
and J. Vanthienen, Event-Based Real-Time Decomposed Conformance
Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
345–363.

[11] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Tor-
roni, “Verifiable agent interaction in abductive logic programming: The
sciff framework,” ACM Trans. Comput. Logic, vol. 9, no. 4, pp. 29:1–
29:43, Aug. 2008.

[12] B. Vázquez-Barreiros, S. J. van Zelst, J. C. A. M. Buijs, M. Lama, and
M. Mucientes, Repairing Alignments: Striking the Right Nerve. Cham:
Springer International Publishing, 2016, pp. 266–281.

[13] W. M. P. van der Aalst, “Decomposing petri nets for process mining: A
generic approach,” Distributed and Parallel Databases, vol. 31, no. 4,
pp. 471–507, Dec 2013.

[14] H. M. W. Verbeek, W. M. P. van der Aalst, and J. Munoz-Gama, “Divide
and conquer: A tool framework for supporting decomposed discovery in
process mining,” The Computer Journal, vol. 60, no. 11, pp. 1649–1674,
2017.

[15] H. M. W. Verbeek, Decomposed Replay Using Hiding and Reduction
as Abstraction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017,
pp. 166–186.

[16] J. Munoz-Gama, J. Carmona, and W. M. P. van der Aalst, “Single-Entry
Single-Exit decomposed conformance checking,” Information Systems,
vol. 46, pp. 102–122, 2014.

[17] F. Taymouri and J. Carmona, “Model and event log reductions to boost
the computation of alignments,” 2016.

[18] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Scalable
process discovery and conformance checking,” Software & Systems
Modeling, Jul 2016.

[19] W. M. P. van der Aalst, “The application of Petri nets to workflow
management,” Journal of circuits, systems, and computers, vol. 8, no. 01,
pp. 21–66, 1998.

[20] T. Murata, “Petri nets: Properties, analysis and applications,” Procee-
dings of the IEEE, vol. 77, no. 4, pp. 541–580, Apr 1989.

[21] J. Desel and J. Esparza, Free choice Petri nets. Cambridge university
press, 2005, vol. 40.

[22] J. Muñoz-Gama and J. Carmona, “A fresh look at precision in process
conformance,” in Business Process Management, R. Hull, J. Mendling,
and S. Tai, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 211–226.

[23] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering
block-structured process models from event logs containing infrequent
behaviour,” in Business Process Management Workshops. Springer,
2014, pp. 66–78.

[24] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and
A. Serebrenik, “Process discovery using integer linear programming,”
in International Conference on Applications and Theory of Petri Nets.
Springer, 2008, pp. 368–387.

