
Where innovation starts

Den Dolech 2, 5612 AZ Eindhoven
P.O. Box 513, 5600 MB Eindhoven
The Netherlands
www.tue.nl

Author
Eric Verbeek

Date
July 14, 2017

Version
1.1

Log Skeletons

Contribution to the Process Discovery Contest 2017



Technische Universiteit Eindhoven University of Technology

1 Introduction

This document explain my contribution to the Process Discovery Contest 2017. Last year, I
competed using a decomposition approach, this year I thought to do it radically different. Many
of the discovery algorithm focus heavily on the directly-follows relation, and for many of them this
is a black-and-white relation: Either a is directly followed by b, or not. This way, these discovery
algorithm abstract from information that could potentially be very useful for discovery, and for
classification.

For this reason, I’ve tried to think out-of-the-box, by using frequencies of activities, and by using
different relations than only the directly-follows relation. The resulting model I’ve called a log
skeleton, as it more or less shows the structure of the log in a comprehensive way (IMO). The
figure below shows two views on such log skeletons: The one on the left-hand side for log1 and
the other on the right-hand side for log2. Later on, the meaning of the arcs will be explained in
details, for now it suffices to know that they indicate a necessary relation between two activities.

Sometimes, the conversion from a log skeleton to a Petri net is quite simple, of which log2 is a
nice example. By unfolding its initial loop once, and by looking at the frequencies of the activities,
this conversion can be quite easily done. However, for some other logs this conversion much less
straightforward, of which log1 is a nice example. Especially the arrows (long-term dependencies?)
from a to n and the arcs going into the yellow f − k − r − j block are hard to do. It is possible, but
the Petri net model does not look as nice (again, IMO) as the log skeleton does.

Using only the log skeletons, I’ve constructed a classifier for the test logs. Nevertheless, it must

1 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

be mentioned that I’m using quite a lot of log skeletons for the classification as I allow the classifier
two take two arbitrary activities from the event log and to filter the event log on these activities,
where each activity may be required (only traces where this activity occurs are filtered in) or
forbidden (only traces that where this activity does not occur are filtered in). For each of these
filtered logs, I then construct a log skeleton that I use in the classification. As a result, it is clear
that I need the original event log for the classification, as the log skeleton of this event log does
not suffice for the filtering. As such, one could argue that I’m actually using the original event
log as my model. Fair enough. But it classifies quite good, and although it is called a Process
Discovery Context, it is more a Process Classification Contest.

The remainder of this report is organized as follows. Chapter 2 introduces the log skeletons and
their replay semantics, if one would like to call it that. Chapter 3 details the process of discov-
ering a nice log skeleton from an event log by means of an example: log10, and shows the nice
log skeletons we obtained this way for every log. This Chapter shows that in the process we will
massage a log into a more favorable shape (by removing noisy traces and applying so-called split-
ters). Chapter 4 details the approach taken for the classification, which, as mentioned, uses lots
of log skeletons. But as these log skeletons can be created very fast, this approach is very well
feasible. Chapter 5 details the implementation of the entire approach using log skeletons, which
is done in a new ProM 6 package. Chapter 6 details the results obtained using the implemented
approach. Finally, Chapter 7 ends the report with some conclusions and observations.

2 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

2 Log Skeleton

This shows a typical log skeleton. A log skeleton is a graph, where every node corresponds to

3 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

an activity and every edge corresponds to a constraint between two (not necessarily different)
nodes.

2.1 Activities

This shows a typical node, which corresponds to an activity. In this case, the activity is Register + complete,
which has occurred 1000 times in the log, and has AnalyzeDefect + complete as equivalence class.
This equivalence class will be explained later on.

Apart from the regular activities, a log skeleton contains two artificial activities: | > (start of a
trace) and [] (end of a trace).

This shows that the log contains 1000 traces.

2.2 Constraints

A log skeleton may contain six different edge types: One edge type for every possible constraint.
Possible constraints are Always Together, Always Before, Always After, Never Together, Next (One Way),
and Next (Both Ways).

2.2.1 Always Together

The Always Together constraint is visualized by an open box on each end of the edge. In a log
skeleton, an open box roughly translates to Always, and the end at which it is placed determines
the viewpoint for the constraint. As this constraint is symmetrical, it is placed at both edge ends.

This shows an Always Together constraint between Register + complete and AnalyzeDefect + start.
This constraint indicates that both activities occur equally often in every trace. As a result, if
Register + complete occurs n times in some trace, then so does AnalyzeDefect + start.

4 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

This shows that both activities are Always Together with the artificial start activity | >. From this,
we may conclude that both activities occur exactly once in every trace.

This constraint determines the equivalence class of an activity: Two activities related by the
Always Together constraint are considered to be equivalent. As a result, they share the same color
in the visualization of the log skeleton.

2.2.2 Always Before

The Always Before constraint is visualized by an arrow with the open box (Always) at the head.

This indicates that every occurrence of AnalyzeDefect + start is preceded in the trace by an occur-
rence of Register + complete: If you stand on an AnalyzeDefect + start, and look towards the start
of that trace, you will see a Register + complete somewhere.

2.2.3 Always After

The Always After constraint is visualized by an arrow with the open box (Always) at the tail.

5 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

This indicates that every occurrence of Register + complete is followed in the trace by an occur-
rence of AnalyzeDefect + start: If you stand on a Register + complete, and look towards the end of
that trace, you will see an AnalyzeDefect + start somewhere.

Both the Always Before and the Always After constraints provide a sense of direction in the log
skeleton. In the example, it is clear that always first register + complete has to occur, after which
AnalyzeDefect + start has to occur.

2.2.4 Never Together

The Never Together constraint is visualized by a closed box (Never) on each end of the edge.

This indicates that Register + complete never occurs together with itself: If you stand on a Register + complete,
and look at both the start and end of the trace, you will see no Register + complete (note that
we assume you cannot see the node you’re standing on). As a result, we may conclude that
Register + complete occurs at most once in every trace.

The two remaining constraints correspond to the directly-follows-graph, which is well-known in
the area of process mining. However, as we think the one-way edges in this graph are more
informative than the two-way edges, we have split the edges over the two remaining types.

2.2.5 Next (One Way)

The Next (One Way) constraint is visualized by an open dot (Next) on the tail of the edge.

6 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

This indicates that in the log Register + complete was 1000 times directly followed by AnalyzeDefect + start,
and never the other way around.

2.2.6 Next (Both Ways)

The Next (Both Ways) constraint is visualized by an open dot (Next) on each end of the edge.
Furthermore, the arrow at the tail is different to be able to distinguish the source from the target.

This shows that in the log Repair(Complex)+ start was 284 times directly followed by InformUser + complete,
and 83 times the other way around.

2.3 Replay Semantics

A trace is accepted by the log skeleton if and only if it does not violate any of the constraints:

Always Together A trace violates an Always Together constraint if the activities involved in the
constraint do not occur equally often in the trace.

Always Before A trace violates an Always Before constraint if some occurrence of the target ac-
tivity is not preceded by some occurrence of the source activity in the trace.

Always After A trace violates an Always After constraint if some occurrence of the source activity
is not followed by some occurrence of the target activity in the trace.

Never Together A trace violates a Never Together constraint if both activities involved in the con-
straint occur in the the trace.

Next (One Way) and Next (Both Ways) A trace violates the Next constraints if in the trace some
activity is directly followed by another constraint, whereas a corresponding Next constraint
does not exist.

However, we know from the organizers that in a test log precisely 10 traces are non-fitting. Fur-
thermore, we have observed that some of the training logs are not complete in the directly-follows
relation: Although in the model some activity could directly be followed by some other activity, the
log does not reflect this (in no trace is the first activity directly followed by the second). For this
reason, we impose a hierarchy on these constraints, and only check the higher constraints in this
hierarchy until at least 10 non-fitting traces were found.

In this constraint hierarchy, we have three different levels, where level 1 is the highest level and
level 3 the lowest:

1. Always Together

7 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

2. Always Before and Always After

3. Next (One Way) and Next (Both Ways)

As a result, if we have already found 10 violations to the Always Together constraint, we will not
check the other constraints for violations.

Note that the Never Together constraint is not checked explicitly. To explain this, consider the log
skeleton on the front page, and observe the a and u activities that follow the artificial start activity.
For these two activities, three Never Together constraints are found:

• between a and u,

• between a and itself, and

• between u and itself.

If we combine these three constraints by the fact that there are 800 traces in which a occurs 715
times and u 85 times, we (as humans) immediately ’see’ that there is a mandatory choice between
a and u. However, to conclude this programmatically, we would need to include a reasoner of
sorts. For this reason, we will not check these Never Together constraints explicitly, but we will do
that in an implicit way by filtering activities. In the example with the a and u activities: If we filter
out all traces where u occurs (both in the training log as in the test log), a becomes a mandatory
activity:

8 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

As a result, it will belong to the same equivalence class as the artificial start and end activities,
which can then be checked easily by the Always Together constraint.

9 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

3 Discovery

3.1 Example Discovery

To showcase the discovery using log skeletons, we will use it on the log10 log from the contest.

This shows immediately that e and p occur exactly once in every trace, and that e comes before p.
This also hints (as 112+888 = 1000) that there is a choice construct right in the beginning between
a and u. This can quite easily be confirmed by having a look at the Never Together constraint.

Another thing that is striking is the fact that d, which occurs quite far below in the skeleton, occurs
800 times. From the information as provided by the organizers, we know that log10 contains
noise, which means that the tail of 20% of its traces was removed. That is, from 200 out of 1000
traces, the last part of the trace was removed. Apparently, every time a last part was removed, it

10 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

included the removal of d. Assuming that this is indeed the case, we filter out those traces that
do not contain d, which result in the following log skeleton.

This shows that both b and d now have fallen ‘in line’ with e, p, | >, and []. Note that the
Always Before constraint between b and p seems to be missing, but observe that this constraint is
there by transitivity through j and o.

From the information as provided by the organizers, we also know that the model underlying
the log contained reoccurring activities (or duplicate activities). Therefore, we suspect at least
i, o, q, and j to be reoccurring. To make the log skeleton more distinctive, and better suited
for the classification task that lays ahead, we try to split every such activity into non-reoccurring
activities. For this reason, the log skeleton browser contains a simple activity splitter than can
easily be configured by the user.

This activity splitter splits some activity, say o, over some other activity, say j. This means that a
trace is conceptually split into two parts, where the first part ends with the first occurrence of j,
and the second part is the remainder. The activity o is then renamed o.0 in the first part of the
trace, and renamed o.1 in the second part.

11 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

This shows the result of this split. Note that o.0 has also fallen ‘in line’, and that now j nicely
separates o.0 from o.1.

The choice to split o over j seems quite arbitrarily chosen, we concede to that, but it is quickly
done and a visual inspection of the result may tell whether the split made sense or not. In a way,
there is some trial-and-error here, where the user tries out some ways to split activities. Perhaps
there are ways to do this in a more automated way, but this has not yet been investigated. At
least for this contest, all splits were found using the trail-and-error approach.

As a result of this trial-and-error, we included splitting i over j as well, splitting q over itself (also
possible), splitting j over itself, splitting g over q.1, splitting o.1 over itself, and splitting q.1 over
itself, which resulted in the following log skeleton.

12 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

With the help of the other views on the log skeleton, it is possible to extract a Petri net from the
log skeleton. For example, the following Never Together view on selected activities shows that in
the bottom part there is a choice between (1) f , (2) g.0, j.1, and m, and (3) g.1, i.1, o.1.?, and q.1.?,
where in the latter cluster there is a choice between either q.1.1 or both o.1.1 and r.

3.2 Discovered Models

For sake of completeness, every log skeleton in this section comes with its configuration (the
golden box below the log skeleton), which shows how the log skeleton was obtained from the

13 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

original log. Note that we only show the Always constraints here (with relevant Next (One Way)
constraints), as these are most informative, but that the other constraints can also be of use.

3.2.1 log1

Note the Always constraints between a and n, b and c to f , s to k, and l to j. From the information
as provided by the organizers, we know that the model underlying this log contains long-term
dependencies. We guess these constraints pinpoint some of these long-term dependencies.

Added Test Traces

In the classification process, the trace 4 of the second test event log is added to the training event
log. This trace was originally classified as negative, while we assumed it should be positive.
By adding it to the training event log, we make sure it will be classified positive. Of course, our
assumption could be wrong, in which case the classification will not be better.

Whereas in every trace in the training log every r is always preceded by some l, trace 4 shows
that the only r is followed by the only l. As the organizers have confirmed that this trace is

14 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

indeed a true positive (as we classified all traces correctly for this log, which included a positive
classification for this trace), we have the classifier insert the trace into the training log to ensure it
will be classified positive.

3.2.2 log2

15 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

3.2.3 log3

Note the fact that o occurs only once in the entire log. Not much conclusions one can draw from
that single occurrence.

16 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

3.2.4 log4

17 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

3.2.5 log5

An odd construct: a.1 is in a loop construct, and e is always preceded by it, that is, by the loop.
Apparently, e can only occur if the loop has occurred.

18 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

3.2.6 log6

Added Test Traces

In the classification process, the traces 4 and 11 of the second test event log are added to the
training event log. These traces were originally classified as negative, while we assumed they
should be positive. By adding it to the training event log, we make sure they will be classified
positive. Of course, our assumption could be wrong, in which case the classification will not be
better.

Whereas in every trace in the training log that contains q, every a is always followed by some c,
trace 4 shows that the only a is preceded by both occurrences of c. Whereas in every trace in the
training log, every n is always preceded by some a, trace 11 shows that the only n is followed by
the onlya.

19 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

3.2.7 log7

Note that for log7 we used a splitter named 7B. This is a splitter which splits activity b using the
following rules:

• If the b is the last in the trace, then this b is renamed b.1.

• If the b is the last-but-one in the trace while the last one is s, then this b is renamed b.1.

• Otherwise, b is renamed b.0.

The reason for this less-simple splitter is that I believe the net to end with either an n or an implicit
choice between b and s, which many be directly preceded by an implicit choice between b and p.
To get some clarity here, we need to split this b into b.0 and b.1. Clearly, if the b is the last one
in the trace, it should be the b in the implicit choice with s. Furthermore, if the next ends with s,
the it is OK to consider a last-but-one b to be in the same implicit choice as this s: If we only see
p followed by b followed by s, then there is no way to know whether the b is in the same implicit
choice with the p or with the s. In all other cases, we may assume that a b should be in the same
implicit choice as the p, as the ‘other’ b can only come last or last-but-one.

20 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

The figure above on the left-hand side shows the Next (One Way) relations between these activ-
ities. Note that Always constraints are of no use here, as both implicit choices are optional: b.1
may be preceded by b.0, or may be not, etc. I do not have an explicit constraint yet that says
that if both occur, then one always follows the other: If both b.0 and b.1 occur in a trace, then b.1
follows b.0. However, if I filter in only those traces where both occur, things become much more
clear, as shown in the figure above on the right-hand side. This filtering tactics will be used later
on in the classification.

21 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

3.2.8 log8

22 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

3.2.9 log9

23 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

3.2.10 log10

24 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

4 Classification

The log skeletons as discovered in the previous section will be used to classify the traces in
the test logs. To classify the test traces from a test log using some training log, the following
procedure C is applied:

1. If a filter is provided for the training log, apply it on the training log to filter out the noise.

2. If a splitter is provided for the training log, apply it on the training log to split (reoccurring)
activities.

3. Discover a training log skeleton from the training log.

4. For every test trace in the test log:

(a) Create a single-trace test log containing only this test trace.

(b) If a splitter is provided for the training log, apply it on the single-trace test log to split
(reoccurring) activities.

(c) Discover a single-trace test log skeleton from the single-trace test log.

(d) Check whether all relevant constraints from the training log skeleton are satisfied by
the single-trace test log skeleton.

(e) If not, classify the corresponding trace as negative.

However, there is more to it, as we will not check it on only the discovered model, but also on a
number of submodels of that discovered model. Take, for example, log10 again as example. We
already (more or less) concluded that a and u were in a choice construct in the beginning of the
model: Either we start with an a, or with a u, and after that both do not occur again. To reach
this conclusion, recall that we combined knowledge obtained using different views on the model.
There is, however, a simpler way to do this: If we would remove all traces where a does not occur,
u would automatically fall ‘in-line’ with | >, e, etc. The following figure shows this result.

25 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

Clearly, now we can easily check by the Always Together constraint whether u is always there if a
is not.

Based on this, we use the following procedure C+ for the classification:

1. Apply procedure C on the training log and the test log, using the three Always constraints
as relevant constraints.

2. For every activity in the training log:

(a) Create a first training sublog from the training log that contains all traces that contain
the activity (filtering in).

(b) Create a first test sublog from the test log that contains all traces that contain the
activity.

(c) If we have classified less than 10 traces as negative, apply procedure C on the first
training sublog and the first test sublog, using the Always Together constraint as the only
relevant constraint.

26 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

(d) Create a second training sublog from the training log that contains all traces that do
not contain the activity (filtering out).

(e) Create a second test sublog from the test log that contains all traces that do not contain
the activity.

(f) If we have classified less than 10 traces as negative, apply procedure C on the second
training sublog and the second test sublog, using the Always Together constraint as the
only relevant constraint.

3. Repeat Step 2 but now for every two different activities in the training log, where the first
activity can be filtered in or out, and the second can be filtered in our out.

4. Repeat Step 2 but now for every three different activities in the training log, where all three
activities will be filtered out.

5. Repeat Step 2, Step 3, and Step 4 but now using both the Always Before and Always After
constraints as relevant constraints.

6. Repeat Step 2, Step 3, and Step 4 but now using both the Next (One Way) and Next (Two Ways)
constraints as relevant constraints.

7. Classify any unclassified traces as positive.

27 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

5 Implementation

The entire approach has been implemented in the LogSkeleton package of ProM 6. At the moment
of writing, this package is not yet available in the ProM Nightly Build, but it will be made available
on July 1st, 2017. If needed, the package can be checked out from our SVN repository1, after
which ProM can be started using the ProM with UITopia (LogSkeleton) run configuration
in Eclipse. The plug-ins will then be available to the user.

This package contains the following plug-ins (in alphabetical order):

Classify Test Log using Log Skeleton Takes a training event log and a test event log, and re-
turns a log containing the positive traces from the test log. The classification is done by
using a collection of log skeletons of the training logs and filtered sublogs of the training log.

Export Log Skeleton Exports a log skeleton to a file (with extension lsk).

Filter Event Log on Log Skeleton Creates a sublog from the provided event log. This sublog
contains the fitting traces according to the provided log skeleton.

Filter PDC 2017 Event Log Early attempt to filter out the noise from the noisy logs in a generic
way. Not used anymore.

Import Log Skeleton Imports a log skeleton from file (with extension lsk).

Log Skeleton Browser Visualizes the provided log skeleton, allowing the user to select which
activities and/or constraints to show.

Log Skeleton Builder Creates a log skeleton from the provided event log. In this event log, the
case identifiers and activity names are stored in the concept : name attributes of the traces
and events.

Log Skeleton Filter and Browser Visualizes the provided event log using log skeletons. The
visualizer allows the users to set required activities, forbidden activities, and splitters. The
visualizer filters the provided event log on the required and forbidden activities as selected
by the user, then splits the filtered event log on the splitters as set by the users, then creates
a log skeleton from the split filtered event log, and then visualizes this log skeleton using
the Log Skeleton Browser plug-in.

PDC 2017 Log X Filter Creates a filtered sublog from the provided event log X containing those
800 traces that we believe are noise-free. Possible values for X are 1, 2, 5, 9, and 10.

PDC 2017 Log X Splitter Create an edited log from the provided event log X containing the
same traces and number of events, but where (we believe) relevant activities have been
split into multiple activities. This can be done to resolve reoccurring activities, but also to
unfold loops. Possible values for X are 2, 4, 5, 7, 9, and 10.

1https://svn.win.tue.nl/repos/prom/Packages/LogSkeleton/Trunk

28 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

PDC 2017 Test Classifies the test logs. Results in an overview for each of the test logs according
to the directions as provided by the organizers. This plug-ins assumes that the training log
X is located in a specific file2, the first test log X is located in another specific file3, etc.

PDC 2017 Test 2016 Classifies the test logs from the 2016 edition of the Process Discovery
Contest. Used to check whether the approach made sense. Also assumes fixed locations
for the various log files.

The figure above shows the Log Skeleton Filter and Browser on log10, after the filter and splitters
for this log have been applied. In the middle, the log skeleton is visualized. On the right, the
user can select which activities to show and which constraints to show. As soon as the user
changes the selection, the visualization in the middle will be updated. Furthermore, the user
can decide to open a new window visualizing the current log skeleton. This allows for easy
comparison between different log skeletons, if needed. On the left, the user can select activity
filters and activity splitters which can be applied to the log before a log skeleton is build for it.
The user can select required activities (only traces where all these activities occur will be filtered
in) and forbidden activities (only traces where none of these activities occur will be filtered in).
Furthermore, the user can enter activity splitters by providing the name of the activity s/he wants
to split and the name of the activity it should be split on. The user needs to apply these filters
and splitters using the button below, in which case the log will first be filtered, then split, then a
log skeleton will be build for it, which will then be visualized to the right. This new visualization
will always start with all activities selected, and the Always Before and Always After constraints
selected (note that the Always Together constraint is always visualized using the colors). If both
the Always Before and Always After constraints are selected and the Next (One Way) constraint is
not, then the visualizer adds a Next (One Way) constraint from an activity to another activity if there
are no Always constraint from that activity to that other activity and if the Next (One Way) constraint
occurs for at least 20% of either the activity or the other activity.

Classifying a test log using a training log is easy. Let’s assume you want to classify the test log
test_log_june_10.xes on the training log log10.xes. First, you need to import both logs:

2D:\DropBox\Projects\PDC 2017\logX.xes
3D:\DropBox\Projects\PDC 2017\test_log_may\test_log_mayX.xes

29 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

Second, with the training log selected, you start the Classify Test Log using Log Skeleton plug-in and
add the test log as second argument:

Third, you run the plug-in by selecting the Start button. This creates a sub log containing all
positive traces from the test log, and automatically shows it:

30 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

Finally, if you want to know which traces were classified positive, select the Inspector tab:

This shows that the traces 6, 8, 9, 10, 11, 13, 16, 17, 18, and 19 were classified positive.

As a side effect of the classification, the main log skeleton has been made available in ProM. To
access this log skeleton, select the workspace tab in ProM, and then the All tab:

31 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

You can view the generated log skeleton by selecting it and then by selecting the View resource
button (with the eye icon):

Please note that the actual classification differs per event log:

• Different filters are used for different event logs.

• Different splitter are used for different event logs.

• For some event logs, some test traces are added to improve (hopefully) the classification.

For this, it is important that the names of the logs are log1, . . ., log10. Based on the name of the

32 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

log, as captured by the concept : name attribute of the log, a different filter is applied, a different
splitter is applied, and possibly some extra traces are added.

33 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

6 Results

6.1 May Test Logs

model_1 model_2 model_3 model_4 model_5 model_6 model_7 model_8 model_9 model_10
trace_1 FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE
trace_2 TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
trace_3 TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
trace_4 TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE
trace_5 TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
trace_6 FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
trace_7 FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
trace_8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
trace_9 TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE

trace_10 FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
trace_11 TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
trace_12 TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
trace_13 FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE
trace_14 FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
trace_15 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
trace_16 TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
trace_17 TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE
trace_18 FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
trace_19 FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE
trace_20 TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE

#True 10 10 10 10 10 10 10 10 10 10

It has been confirmed by the organizers that this classification is 100% correct.

6.1.1 Test Log 1

Case 18: Always Together fails for [[], c, g, m, p, s, t, u, v, w, |>]
Case 14: Always Together fails for [d, h, o]
Case 6: Always Before fails for q, missing are [e]
Case 10: Always Together fails for [[], c, g, m, p, s, t, u, v, w, |>]
Case 1: Always Together fails for [[], c, g, m, p, s, t, u, v, w, |>]
Case 7: Always Before fails for n, missing are [g, u, t]
Case 15: Always Together fails for [d, h, o]
Case 19: Always Together fails for [b, l]
Case 13: Always After fails for e, missing are [o, h]
Case 19: Always Together fails for [[], c, g, m, p, s, t, u, v, w, |>]

Case 8 excluded by positive filter [a] and negative filter [], support = 717
Case 8: Always Before fails for i, missing are [e]

6.1.2 Test Log 2

Case 20: Always After fails for l, missing are [m]
Case 10: Always Together fails for [[], a.0, d, k, m, o, s.0, |>]
Case 10: Always Together fails for [a.1, n, s.1, t]
Case 7: Always Before fails for p, missing are [j]
Case 18: Always Together fails for [a.1, n, s.1, t]
Case 1: Always Together fails for [h, j, p]
Case 15: Always After fails for p, missing are [i]
Case 18: Always Together fails for [[], a.0, d, k, m, o, s.0, |>]
Case 11: Always Together fails for [[], a.0, d, k, m, o, s.0, |>]
Case 8: Always Together fails for [a.1, n, s.1, t]

34 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

Case 19 excluded by positive filter [] and negative filter [e], support = 603
Case 19: Always Together fails for [b, f, g, i]

Case 9 excluded by positive filter [a.0] and negative filter [], support = 800
Case 9: Next fails for [t, s.1]

6.1.3 Test Log 3

Case 12: Always Together fails for [[], h, |>]
Case 18: Always Before fails for q, missing are [g]
Case 7: Always Together fails for [c, g, m, q, u]
Case 4: Always Together fails for [c, g, m, q, u]
Case 2: Always Together fails for [c, g, m, q, u]
Case 8: Always Together fails for [c, g, m, q, u]
Case 7: Always Together fails for [[], h, |>]
Case 11: Always Together fails for [c, g, m, q, u]

Case 13 excluded by positive filter [] and negative filter [a], support = 117
Case 13: Always Together fails for [[], h, p, s, |>]

Case 15 excluded by positive filter [] and negative filter [a], support = 117
Case 15: Always Together fails for [[], h, p, s, |>]

Case 9 excluded by positive filter [] and negative filter [d], support = 933
Case 9: Always Together fails for [c, g, m, q, r, u]

6.1.4 Test Log 4

Case 12: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 7: Always Together fails for [d, r.0]
Case 2: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 8: Always After fails for a, missing are [m.0]
Case 6: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 3: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 15: Always After fails for f, missing are [b]
Case 10: Always Together fails for [d, r.0]
Case 7: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 5: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]

Case 13 excluded by positive filter [] and negative filter [p], support = 871
Case 13: Always Together fails for [a, m.0]

6.1.5 Test Log 5

Case 12: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 2: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 20: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 6: Always Before fails for f, missing are [u, l, j]
Case 19: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 9: Always After fails for n, missing are [v]
Case 1: Always After fails for b, missing are [c]

Case 8 excluded by positive filter [g.1.0] and negative filter [], support = 54
Case 8: Always Together fails for [n, q]

Case 10 excluded by positive filter [] and negative filter [m], support = 544
Case 10: Always Together fails for [g.1.0, i.1.0]

Case 18 excluded by positive filter [n, a.1] and negative filter [], support = 245
Case 18: Always Together fails for [k, q]

6.1.6 Test Log 6

Case 15: Always Before fails for p, missing are [h]
Case 8: Always After fails for d, missing are [k]
Case 7: Always Together fails for [h, p]
Case 6: Always Together fails for [h, p]

35 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

Case 1: Always Together fails for [h, p]
Case 11: Always Together fails for [h, p]
Case 3: Always Together fails for [h, p]
Case 2: Always Together fails for [h, p]
Case 10: Always After fails for p, missing are [k]

Case 13 excluded by positive filter [] and negative filter [a], support = 505
Case 13: Always Together fails for [[], b, g, j, |>]

6.1.7 Test Log 7

Case 10: Always Together fails for [[], f, j, l, n.0, |>]
Case 7: Always Together fails for [[], f, j, l, n.0, |>]
Case 12: Always Together fails for [[], f, j, l, n.0, |>]
Case 15: Always Before fails for p.0, missing are [j]
Case 6: Always Together fails for [[], f, j, l, n.0, |>]
Case 4: Always Together fails for [[], f, j, l, n.0, |>]
Case 8: Always Before fails for j, missing are [n.0]
Case 3: Always Together fails for [[], f, j, l, n.0, |>]

Case 11 excluded by positive filter [] and negative filter [b.1, n.1], support = 111
Case 11: Always Together fails for [[], f, j, l, n.0, s, |>]

Case 14 excluded by positive filter [] and negative filter [b.1, n.1], support = 111
Case 14: Always Together fails for [[], f, j, l, n.0, s, |>]

6.1.8 Test Log 8

Case 18: Always Together fails for [a, j]
Case 18: Always Together fails for [[], d, |>]
Case 14: Always Together fails for [a, j]
Case 19: Always Before fails for h, missing are [d]
Case 16: Always Together fails for [[], d, |>]
Case 18: Always Together fails for [b, q]
Case 15: Always Together fails for [b, q]

Case 6 excluded by positive filter [b, i] and negative filter [], support = 121
Case 6: Always Together fails for [[], b, d, h, i, o, p, q, |>]

Case 13 excluded by positive filter [n] and negative filter [b], support = 68
Case 13: Always Together fails for [[], d, k, l, n, |>]

Case 11 excluded by positive filter [] and negative filter [f, e, c], support = 64
Case 11: Always Together fails for [[], d, m, |>]

Case 17 excluded by positive filter [] and negative filter [f, e, c], support = 64
Case 17: Always Together fails for [[], d, m, |>]

Case 20 excluded by positive filter [] and negative filter [g, a, i], support = 80
Case 20: Always Together fails for [[], d, n, |>]

Note that for this log the Next constraints play a role, as 3 out of 10 non-fitting traces (11, 17, and
20) were the result of these constraints.

6.1.9 Test Log 9

Case 13: Always Before fails for o.0, missing are [z.1]
Case 12: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]
Case 15: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]
Case 15: Always Together fails for [aa, ab, e, h.0, k.0, x, z.0]
Case 17: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]
Case 4: Always After fails for t.1, missing are [s]
Case 15: Always Together fails for [f, h.1, l]
Case 9: Always Before fails for s, missing are [f]
Case 5: Always After fails for h.0, missing are [h.1]
Case 3: Always Before fails for r, missing are [p.1]
Case 18: Always Together fails for [aa, ab, e, h.0, k.0, x, z.0]
Case 15: Always Together fails for [j, p.0]

Case 11 excluded by positive filter [] and negative filter [s], support = 44

36 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

Case 11: Always Together fails for [o.0, o.1]

6.1.10 Test Log 10

Case 15: Always Before fails for b, missing are [j.0]
Case 11: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 7: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 4: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 1: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 19: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 9: Always After fails for i.1, missing are [d]
Case 12: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 8: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 12: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 1: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 7: Always Together fails for [g.0, j.1, m]
Case 19: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 10: Always Together fails for [g.0, j.1, m]
Case 11: Always Together fails for [g.0, j.1, m]
Case 10: Always Together fails for [g.1, i.1, o.1.0, q.1.0]

6.2 June Test Logs

model_1 model_2 model_3 model_4 model_5 model_6 model_7 model_8 model_9 model_10
trace_1 TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
trace_2 FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE
trace_3 FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
trace_4 TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE
trace_5 FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
trace_6 FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
trace_7 TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
trace_8 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
trace_9 FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE

trace_10 TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
trace_11 TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
trace_12 FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
trace_13 FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE
trace_14 TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE
trace_15 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
trace_16 FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
trace_17 FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
trace_18 FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
trace_19 TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE
trace_20 TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

#True 10 10 10 10 10 10 10 10 10 10

It has been confirmed by the organizers that this classification is 100% correct for all models
except 6. For the model 6, we ran out of our two classification attempts. Best results from the
two classification results were 4 misclassifications for model 6. In the end, this would be a score
of 196 out of 200. The classification shown above is attempt 3. We hope it will do better than 196
out of 200, but we do not know.

6.2.1 Test Log 1

Case 12: Always After fails for a, missing are [d, h]
Case 18: Always Together fails for [d, h, o]
Case 17: Always Together fails for [[], c, g, m, p, s, t, u, v, w, |>]
Case 5: Always Together fails for [[], c, g, m, p, s, t, u, v, w, |>]
Case 17: Always Together fails for [b, l]
Case 6: Always Before fails for o, missing are [d]
Case 9: Always Together fails for [d, h, o]
Case 3: Always Together fails for [[], c, g, m, p, s, t, u, v, w, |>]
Case 2: Always Together fails for [[], c, g, m, p, s, t, u, v, w, |>]
Case 16: Always Before fails for n, missing are [a]
Case 13: Always Before fails for u, missing are [v]

37 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

6.2.2 Test Log 2

Case 10: Always Before fails for k, missing are [m]
Case 13: Always Together fails for [a.1, n, s.1, t]
Case 15: Always Together fails for [a.1, n, s.1, t]
Case 1: Always Together fails for [a.1, n, s.1, t]
Case 2: Always Before fails for r, missing are [o]
Case 8: Always Together fails for [h, j, p]
Case 12: Always Together fails for [h, j, p]
Case 11: Always Before fails for j, missing are [h]

Case 6 excluded by positive filter [] and negative filter [l], support = 396
Case 6: Always Together fails for [[], a.0, d, k, m, o, r, s.0, |>]

Case 4 excluded by positive filter [a.0] and negative filter [], support = 800
Case 4: Next fails for [t, s.1]

6.2.3 Test Log 3

Case 7: Always Before fails for f, missing are [h]
Case 4: Always Before fails for f, missing are [h]
Case 12: Always Before fails for m, missing are [q]
Case 15: Always Together fails for [c, g, m, q, u]
Case 5: Always Before fails for q, missing are [g]
Case 10: Always Together fails for [c, g, m, q, u]
Case 8: Always Together fails for [b, f, j]
Case 1: Always Before fails for m, missing are [q]
Case 13: Always Before fails for k, missing are [c]
Case 9: Always Before fails for l, missing are [c]

6.2.4 Test Log 4

Case 12: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 19: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 18: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 12: Always Together fails for [d, r.0]
Case 9: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 8: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 10: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 15: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]

Case 1 excluded by positive filter [] and negative filter [a], support = 188
Case 1: Always Together fails for [m.0, p]

Case 16 excluded by positive filter [a] and negative filter [], support = 812
Case 16: Next fails for [e, o]

Case 20 excluded by positive filter [a] and negative filter [], support = 812
Case 20: Next fails for [v, m.0]

6.2.5 Test Log 5

Case 14: Always Before fails for k, missing are [v, b, r]
Case 6: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 10: Always Together fails for [t, w]
Case 4: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 3: Always Together fails for [o, s]
Case 7: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 1: Always After fails for w, missing are [c]
Case 5: Always Before fails for u, missing are [c]

Case 18 excluded by positive filter [] and negative filter [n, a.1], support = 72
Case 18: Always Together fails for [[], a.0, b, d, f, h, j, k, l, o, p, r, s, u, v, |>]

Case 9 excluded by positive filter [g.0, o] and negative filter [], support = 76
Case 9: Always After fails for m, missing are [g.0]

38 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

6.2.6 Test Log 6

Case 20: Always Together fails for [h, p]
Case 17: Always After fails for f, missing are [k]
Case 18: Always Before fails for p, missing are [h]
Case 15: Always After fails for f, missing are [k]
Case 19: Always After fails for f, missing are [k]

Case 9 excluded by positive filter [] and negative filter [f, n, l], support = 749
Case 9: Always Together fails for [k, s]

Case 10 excluded by positive filter [] and negative filter [f, n, l], support = 749
Case 10: Always Together fails for [k, s]

Case 14 excluded by positive filter [d] and negative filter [], support = 232
Case 14: Always Before fails for f, missing are [d]

Case 8 excluded by positive filter [a] and negative filter [], support = 499
Case 8: Next fails for [e, n]

Case 16 excluded by positive filter [a] and negative filter [], support = 499
Case 16: Next fails for [e, p]

6.2.7 Test Log 7

Case 2: Always Together fails for [[], f, j, l, n.0, |>]
Case 15: Always Together fails for [[], f, j, l, n.0, |>]
Case 10: Always Together fails for [[], f, j, l, n.0, |>]
Case 6: Always Before fails for p.0, missing are [f]
Case 16: Always Before fails for p.0, missing are [l]
Case 8: Always Before fails for c.0.0, missing are [f, l, j]
Case 17: Always Together fails for [[], f, j, l, n.0, |>]
Case 4: Always Together fails for [[], f, j, l, n.0, |>]
Case 1: Always Together fails for [[], f, j, l, n.0, |>]

Case 13 excluded by positive filter [] and negative filter [b.0], support = 831
Case 13: Next fails for [j, s]

6.2.8 Test Log 8

Case 8: Always Before fails for p, missing are [h]
Case 1: Always Before fails for q, missing are [b]
Case 12: Always Before fails for b, missing are [d]
Case 14: Always Together fails for [b, q]
Case 7: Always Before fails for q, missing are [b]
Case 3: Always After fails for n, missing are [d]
Case 15: Always Together fails for [[], d, |>]

Case 4 excluded by positive filter [e] and negative filter [b], support = 92
Case 4: Always Together fails for [[], d, e, k, l, |>]

Case 11 excluded by positive filter [g] and negative filter [b], support = 62
Case 11: Always Together fails for [[], d, g, k, l, |>]

Case 20 excluded by positive filter [b] and negative filter [], support = 573
Case 20: Always Before fails for h, missing are [q]

6.2.9 Test Log 9

Case 4: Always Before fails for ab, missing are [z.0]
Case 3: Always Before fails for r, missing are [h.0, p.1]
Case 10: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]
Case 9: Always Together fails for [aa, ab, e, h.0, k.0, x, z.0]
Case 6: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]
Case 5: Always After fails for o.0, missing are [f, l]
Case 12: Always Before fails for l, missing are [h.1]
Case 9: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]
Case 13: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]
Case 9: Always Together fails for [f, h.1, l]
Case 10: Always Together fails for [aa, ab, e, h.0, k.0, x, z.0]
Case 7: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]

39 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

Case 2: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]

6.2.10 Test Log 10

Case 15: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 2: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 20: Always Together fails for [g.0, j.1, m]
Case 12: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 7: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 15: Always Together fails for [g.0, j.1, m]
Case 14: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 3: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 20: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 5: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 4: Always Together fails for [g.1, i.1, o.1.0, q.1.0]

Case 1 excluded by positive filter [] and negative filter [a], support = 85
Case 1: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, u, |>]

6.3 Final Test Logs

model_1 model_2 model_3 model_4 model_5 model_6 model_7 model_8 model_9 model_10
trace_1 FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE
trace_2 FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
trace_3 TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE
trace_4 FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE
trace_5 TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE
trace_6 FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
trace_7 FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
trace_8 FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE
trace_9 FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

trace_10 TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE
trace_11 TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
trace_12 TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
trace_13 FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE
trace_14 TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
trace_15 TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
trace_16 TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
trace_17 TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
trace_18 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
trace_19 FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
trace_20 FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE

#True 10 10 10 10 10 10 10 10 10 10

It has been confirmed by the organizers that this classification is 100% correct.

6.3.1 Test Log 1

Case 2: Always After fails for e, missing are [d, h]
Case 6: Always Together fails for [d, h, o]
Case 4: Always Before fails for n, missing are [a]
Case 8: Always Together fails for [[], c, g, m, p, s, t, u, v, w, |>]
Case 7: Always Before fails for t, missing are [v]
Case 1: Always Together fails for [d, h, o]
Case 9: Always Together fails for [d, h, o]
Case 20: Always Together fails for [d, h, o]
Case 19: Always Together fails for [d, h, o]
Case 13: Always Before fails for n, missing are [u, t]

6.3.2 Test Log 2

Case 9: Always Before fails for o, missing are [s.0]
Case 20: Always Together fails for [[], a.0, d, k, m, o, s.0, |>]
Case 17: Always Together fails for [a.1, n, s.1, t]
Case 6: Always Together fails for [a.1, n, s.1, t]
Case 2: Always Before fails for l, missing are [o]

40 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

Case 12: Always Together fails for [h, j, p]
Case 8: Always Before fails for m, missing are [o]
Case 1: Always After fails for p, missing are [i]

Case 13 excluded by positive filter [] and negative filter [c], support = 605
Case 13: Always Together fails for [b, f, g, q]

Case 11 excluded by positive filter [a.1] and negative filter [], support = 406
Case 11: Next fails for [t, t]

6.3.3 Test Log 3

Case 18: Always Together fails for [c, g, m, q, u]
Case 19: Always Together fails for [b, f, j]
Case 16: Always Before fails for i, missing are [c]
Case 7: Always Together fails for [c, g, m, q, u]
Case 15: Always Before fails for u, missing are [q]
Case 8: Always Before fails for q, missing are [g]
Case 1: Always After fails for l, missing are [g]
Case 20: Always Before fails for q, missing are [g]
Case 11: Always After fails for l, missing are [g]

Case 5 excluded by positive filter [] and negative filter [d], support = 933
Case 5: Always Together fails for [c, g, m, q, r, u]

6.3.4 Test Log 4

Case 19: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 20: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 8: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 15: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 3: Always Together fails for [[], b, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]
Case 8: Always Together fails for [d, r.0]

Case 18 excluded by positive filter [] and negative filter [g], support = 910
Case 18: Always Together fails for [e, v]

Case 11 excluded by positive filter [] and negative filter [p], support = 871
Case 11: Always Together fails for [a, m.0]

Case 13 excluded by positive filter [e] and negative filter [v], support = 26
Case 13: Always Together fails for [[], b, e, g, h, i, l, m.1, n, r.1, s, t.0, t.1, u, w, |>]

Case 6 excluded by positive filter [] and negative filter [k], support = 843
Case 6: Always Before fails for e, missing are [m.0]

Case 1 excluded by positive filter [a] and negative filter [], support = 812
Case 1: Next fails for [|>, m.0]

6.3.5 Test Log 5

Case 2: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 18: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 14: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 5: Always After fails for v, missing are [c]
Case 7: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]
Case 15: Always Before fails for w, missing are [c]
Case 8: Always Together fails for [[], a.0, b, d, f, h, j, l, r, u, v, |>]

Case 4 excluded by positive filter [] and negative filter [e], support = 447
Case 4: Always Together fails for [[], a.0, b, d, f, h, j, k, l, r, u, v, |>]

Case 16 excluded by positive filter [g.1.0] and negative filter [], support = 54
Case 16: Always Together fails for [n, q]

Case 10 excluded by positive filter [n, a.1] and negative filter [], support = 245
Case 10: Always Together fails for [k, q]

41 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

6.3.6 Test Log 6

Case 14: Always Before fails for t, missing are [c]
Case 18: Always After fails for l, missing are [k]
Case 3: Always After fails for d, missing are [k]
Case 13: Always Together fails for [c, t]
Case 6: Always Together fails for [h, p]
Case 19: Always Before fails for p, missing are [h]
Case 15: Always Together fails for [h, p]
Case 20: Always After fails for d, missing are [k]
Case 1: Always Before fails for p, missing are [h]

Case 12 excluded by positive filter [] and negative filter [a], support = 505
Case 12: Always Together fails for [[], b, g, j, |>]

6.3.7 Test Log 7

Case 2: Always Together fails for [[], f, j, l, n.0, |>]
Case 18: Always Together fails for [[], f, j, l, n.0, |>]
Case 16: Always Before fails for c.0.0, missing are [j]
Case 6: Always Together fails for [[], f, j, l, n.0, |>]
Case 17: Always Before fails for h.0.0, missing are [l]
Case 19: Always Before fails for p.0, missing are [f]

Case 11 excluded by positive filter [] and negative filter [b.1, n.1], support = 111
Case 11: Always Together fails for [[], f, j, l, n.0, s, |>]

Case 20 excluded by positive filter [] and negative filter [b.1, n.1], support = 111
Case 20: Always Together fails for [[], f, j, l, n.0, s, |>]

Case 9 excluded by positive filter [n.1] and negative filter [], support = 516
Case 9: Always After fails for p.0, missing are [n.1]

Case 15 excluded by positive filter [] and negative filter [b.0], support = 831
Case 15: Next fails for [l, s]

6.3.8 Test Log 8

Case 19: Always Together fails for [a, j]
Case 9: Always Before fails for q, missing are [b]
Case 20: Always Before fails for c, missing are [d]
Case 4: Always Before fails for q, missing are [b]
Case 18: Always Together fails for [h, o, p]
Case 17: Always Before fails for c, missing are [d]
Case 11: Always Before fails for q, missing are [b]
Case 5: Always Together fails for [[], d, |>]

Case 7 excluded by positive filter [g, b] and negative filter [], support = 142
Case 7: Always Together fails for [e, l]

Case 10 excluded by positive filter [g, b] and negative filter [], support = 142
Case 10: Always Together fails for [e, l]

6.3.9 Test Log 9

Case 9: Always Before fails for t.1, missing are [h.0]
Case 2: Always Together fails for [j, p.0]
Case 16: Always Before fails for l, missing are [h.1]
Case 6: Always After fails for o.0, missing are [f]
Case 13: Always Together fails for [f, h.1, l]
Case 11: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]
Case 3: Always After fails for o.0, missing are [l]
Case 10: Always After fails for t.1, missing are [s]
Case 1: Always Together fails for [[], a, ad.0.0, ad.0.1, ad.1, b, i, k.1, t.0, v, y, z.1, |>]

Case 7 excluded by positive filter [] and negative filter [s], support = 44
Case 7: Always Together fails for [p.1, r]

42 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

6.3.10 Test Log 10

Case 13: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 2: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 6: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 13: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 6: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 13: Always Together fails for [o.1.1, r]
Case 4: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 13: Always Together fails for [g.0, j.1, m]
Case 8: Always Before fails for q.1.0, missing are [j.0]
Case 3: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, |>]
Case 5: Always Together fails for [g.0, j.1, m]
Case 5: Always Together fails for [g.1, i.1, o.1.0, q.1.0]
Case 10: Always Together fails for [g.0, j.1, m]
Case 10: Always Together fails for [g.1, i.1, o.1.0, q.1.0]

Case 1 excluded by positive filter [] and negative filter [a], support = 85
Case 1: Always Together fails for [[], b, d, e, i.0, j.0, o.0, p, q.0, u, |>]

Case 9 excluded by positive filter [] and negative filter [o.1.1], support = 733
Case 9: Always Together fails for [g.1, i.1, o.1.0, q.1.0, q.1.1]

43 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

7 Concluding Remarks

This document has detailed my contribution to the Process Discovery Contest of 2017. My con-
tribution uses a novel concept called log skeletons. In a way, one could think of a log skeleton as
an X-ray view of an event log. Using a log skeleton, a number of constraints (as detected in the
event log) are made prominent. The most important constraints are the Always constraints: the
Always Together constraint, the Always Before constraint, and the Always After constraint.

An Always Together constraint between two activities indicates that these activities occur equally
often in every trace of the event log. Especially in combination with the artificial start (| >) and
end ([]) activities, this is a very usable constraint, which allows me to detect about 70% of the
non-fitting traces.

An Always Before constraint between two activities indicates that an occurrence of the target ac-
tivity in a trace is always preceded in that trace by an occurrence of the source activity, whereas
an Always After constraint indicates that an occurrence of the source activity is always followed by
an occurrence of the target activity. About 25% of the non-fitting traces were detected because
they violated these constraints.

The remaining 5% of the non-fitting traces were detected using a Next constraint, that is, using
the directly-follows graph.

Currently, the log skeletons work best for event logs that contain no noise. For the Process
Discovery Contest 2017, the log skeletons work because I was able to filter out the noisy traces
from the noisy event logs. Nevertheless, I would like to stress that to create the actual filters
for the noisy event logs, I did use the noisy log skeletons of the noisy logs. Based on what I
saw in the noisy log skeleton, I created the log filters. Of course, for this I used the fact that the
organizers told the contestants which logs contained noise, and what the type of noise was. For
event logs with arbitrary noise, this would have bene much harder, and perhaps I need to extend
the current log skeletons with noise someday. An Always Together constraint would then not be on
every trace, but on, say, 95% of all traces.

The organizers also informed us which event logs contained reoccurring activities, but of course,
the event logs also informed us of this: The event logs for which the activity names were not
consecutive, contained reoccurring activities. The latter shows (I believe) that the organizers
first created an event log without reoccurring activities, and then renamed some activities to
already existing activities, hereby creating the reoccurring activities. Knowing this, one knows
approximately how many reoccurring activities to expect (as many as there are ’holes’ in the
order of activity names). Using the Log Skeleton Filter and Browser, and by using a trial-and-error
approach, I created the splitters that undo these renamings by the organizers as good as possible.
Like with the filters, of course, I could be wrong here, and could have created the wrong filters
and the wrong splitters, but I believe I’m not that far off the mark.

Finally, participating in the Process Discovery Contest 2017 was fun, and gave me the idea for
the log skeletons, but did cost me time. Time I may have spend on other things which were also
important (but less fun, I guess). For that reason I hereby volunteer myself to participate in the
organization of next year’s challenge, if needed. That will prevent me from participating in next’s
year’s challenge, which, in the end, will save me time.

44 Log Skeletons / Version 1.1



Technische Universiteit Eindhoven University of Technology

A Change Log

Version 1.1 Added results on final test logs (see Section 6.3).

Version 1.0 Original report.

45 Log Skeletons / Version 1.1


